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Abstract

Foundation models, including large language models, vision-language models, and similar
large-scale machine learning tools, are quickly becoming ubiquitous in society and in the
professional world. Chemical practitioners are not immune to the appeal of foundation models,
nor are they immune to the many risks and harms that these models introduce. In this work, I
present the first analysis of foundation models using the combined lens of scientific ethics and
chemical professional ethics. I find that general-purpose generative foundation models are in many
ways incompatible with the moral practice of chemistry, though there are fewer ethical problems
with chemistry-specific foundation models. My discussion concludes with an examination of how
the harm associated with foundation models can be minimized and further poses a set of serious
lingering questions for chemical practitioners and scientific ethicists.

1. Introduction

In recent years, machine learning (ML) models have grown in complexity and scale (in terms of e.g. number
of learnable parameters and training data size) at a rapid pace, culminating in the development of so-called
‘foundation models’ or ‘large models’ These models, which are intended to either be directly applicable to
problems in a wide domain space or to be easily generalizable through fine-tuning and transfer learning,
include generative models like large language models (LLMs, e.g. GPT-3 [1], DeepSeek-r1) [2], image and
video diffusion models (e.g. DALL-E [3], Stable Diffusion) [4], and vision-language models (VLMs, e.g.
LLaVA) [5], among other, less common examples. Foundation models have infiltrated nearly every aspect of
the digital world, from standalone applications like the popular chat interface ChatGPT to digital search,
code generation, automated writing, and much more.

The chemical sciences have not been immune to the proliferation of foundation models. There have been
a number of recent efforts seeking to evaluate the capabilities of generative models like LLMs for chemical
tasks, from answering simple questions [6] and mining text [7] to performing complex experiments by
interfacing with laboratory hardware [8, 9]. Efforts to create chemistry-specific foundation models have also
appeared, including protein-folding models [10, 11] and ‘universal’ ML interatomic potentials (MLIPs)
[12,13].

In the recent rush towards ever larger ML models, there has been a growing chorus of concerns related to
the ethics of these ‘artificial intelligence’ (‘AI’) models [14—16]. Less attention has been paid to the ethics of
foundation models when applied in chemistry, though discussion in some other scientific domains such as
medicine is more robust [17-21]. This work aims to fill that gap and initiate a conversation about
responsible development in applied data science and scientific ML in and around chemistry.

I begin (section 2) by providing a theoretical and practical basis for ethical discussion. Drawing from the
ideals of science as well as from several prominent ethical codes for chemists and chemical engineers, I
discuss some basic principles that should guide the practice of chemical science (section 2). In section 3, I
examine the compatibility of general-purpose generative foundation models (e.g. LLMs and VLMs) with
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scientific and chemical ethics. With these more general considerations at hand, I shift focus in section 4 to
examine ethical concerns that are unique or particularly relevant to applications of foundation models in the
chemical sciences. Section 4 also considers the ethics of chemical foundation models. Finally (section 5),
provide a brief discussion and conclusion. I suggest how some of the risks and harms mentioned might be
mitigated, using analogies from efforts in other areas of chemistry, and I emphasize the need for further
research into chemical ‘AT’ ethics.

2. A basis for chemical ethics

2.1. The ideals of the (chemical) scientist

There have been many attempts to distill the ethical ideals of science and scientists. The different sets of ideals
overlap considerably. In the interest of simplicity, I will focus on the six ideals described by the National
Academies of Science, Engineering, and Medicine in their report Fostering Integrity In Research [22]:

1. Objectivity: the responsibility of a scientist to avoid letting their personal feelings or beliefs introduce bias
into their findings

2. Honesty: a core responsibility which urges scientists to engage in truth-telling without significant
omission

3. Openness: a scientist’s responsibility to transparently present all relevant findings and details

4. Accountability: a scientist’s obligation to be able to explain and justify their work, and to stand behind
what they have done

5. Fairness: the obligation to consistently make judgments based on clear, equitable criteria

6. Stewardship: an overarching responsibility to maintain relationships within scientific organizations and
between scientists and broader communities

For the purposes of this discussion, I will act on the assumption that these ideals are appropriate for
(chemical) scientists and that they are generally worth aspiring to.

It is worth pointing out that the principles of the National Academies speak to the social element of
science. While science is an epistemology that has been called a pursuit of ‘reliable knowledge’ [23], as a
profession and practice, it is also a social activity. Essentially all practicing scientists ‘know’ or ‘believe’ ideas
about the natural world on the basis of the theories, simulations, and experiments of other scientists [24]. In
this way, scientific epistemology and scientific ethics cannot be disentangled; our knowledge is only as good
as the scientists who we are reading, listening to, and interacting with. By upholding honesty, we seek to
improve the reliability of our knowledge and that of those around us, while stewardship more directly
preserves the social connections which enables science’s decentralized knowledge generation.

In this discussion, I further assume that all chemical scientists should try to live and work according to
these ideals. It is reasonable to challenge this assumption and ask, ‘Why should they’? It would be insufficient
to draw on legal or professional punishment. Laws are the ethics of the State, not of people, and fear of
retribution, however valid a motivation, is not an ethical one. While the motivations for ethical behavior are
outside of the scope of the present work, I should point out the work of Kovac [24, 25], who has invoked
virtue ethics and specifically the virtue of reverence as a possible answer to this question.

2.2. Chemical ethics in practice

One would hope that most practicing scientists agree with the National Academies’ principles and similar
ideals of science, but most scientists have not explicitly agreed to live and work according to these ideals. Even
if they had, ideals represent aspirations, and it is not reasonable to expect everyone to perfectly live up to
ideals [26].

On the other hand, scientists, including chemists and chemical engineers, regularly agree to follow
professional codes of ethics. It is thus perhaps more appropriate to ground ethical discussions in professional
codes or to use such codes as a complement to broad scientific ideals. Professional codes of ethics have the
additional benefit of being somewhat more specific in what they require of the members of the profession.

Here, I discuss professional chemical ethics, synthesizing guidance from the American Chemical Society’s
(ACS’s) The Chemical Professional’s Code of Conduct [27], the Global Chemists’ Code of Ethics (also developed
through the ACS) [28], the American Institute of Chemical Engineers Code of Ethics [29], the Gesellschaft
Deutscher Chemiker (German Chemical Society) Code of Conduct [30], and The Hague Ethical Guidelines
[31]. I apply an open coding methodology to identify common themes across the five different codes and use
these themes to identify a ‘general’ set of ethical requirements for chemical practitioners, recognizing the
significant limitation of using only five arbitrarily selected codes of ethics. Details of the open coding
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approach, intermediate results, tabulated themes, and descriptions of key themes are provided in the
supplementary information. The resulting synthesized ethical requirements are provided below.

The codes of ethics studied here are mainly focused on applied and experimental chemistry, as illustrated
by their focus on such concepts as safety, chemical weapons, and security of chemicals and equipment. In the
supplementary information, I consider how one could apply these codes to computational chemistry and
data chemistry, the main foci of this work. Most chemical codes of ethics, including those analyzed here, also
fail to address what happens when a chemical practitioner violates their agreed-upon norms. In the present
work, I am mostly unconcerned with the repercussions of unethical behavior and wrongdoing. Instead, I aim
to analyze which behaviors are ethical or unethical. I briefly discuss repercussions later in this work in
section 5.

2.2.1. Stakeholders

In their professional capacity, chemical practitioners should seek to benefit, protect, and serve the
stakeholders of chemical science. Chief among these stakeholders are the public, members of future
generations, and the environment. Chemical practitioners should also benefit, protect, and serve their
employers, clients, colleagues, and the scientific community.

2.2.2. Ethical requirements
Working in the interest of these stakeholders, chemical practitioners must:

e Advance scientific knowledge and understanding, including practical knowledge towards peaceful, benign,
and beneficial applications

e Openly share knowledge and information with the public and within the scientific community

e Promote and advance peaceful, benign, and beneficial applications of chemical science while working to
prevent misuse, e.g. towards the development of illegal compounds or harmful and destructive applications
of dual use compounds and equipment

o In all things, work to protect the environment and work towards sustainability

e Disclose conflicts of interest and seek to minimize the impact of these conflicts of interest on their work

e Engage in the education of themselves, junior chemical practitioners under their supervision, and the
broader public through formal instruction, professional development, and outreach

o Treat others fairly and with respect, minimizing the impact of bias and avoiding harassment, discrimination,
bullying, and similar harmful behaviors

e Be honest and forthright in their professional and scientific communication, avoiding plagiarism, misrep-
resentation, fraud, and fabrication or falsification of results.

e Be aware of and abide by relevant laws and policies, particularly those related to safety and chemical security

e Protect their own health and safety and the health and safety of all relevant stakeholders

e Engage in critical oversight of one’s own work, the work of others, and the work environment to ensure
accuracy, safety, and security

e Report any wrongdoing, misuse, misconduct, or significant risks to relevant authorities

e Maintain and enhance, through their ethical behavior, the respectability of the chemical sciences

3. Squaring foundation models with scientific and chemical ethics

Chemical practitioners are already using generative foundation models in professional contexts, and these
include non-chemistry-specific applications (e.g. image generation, brainstorming, code generation, or
question answering) [32—34]. In this section, I consider how such non-chemistry-specific applications of
general-purpose generative foundation models align with scientific and chemical ethics as described in
section 2. That is, I seek to answer the question: is it ethical for chemical practitioners to lean on
general-purpose foundation models in their off-the-shelf form? Ethical conflicts related to unique
applications in and around chemistry, as well as chemistry-specific foundation models, will be explored in
section 4 below.

3.1. Foundation model risks

Weidinger et al [35] developed a taxonomy of risks associated with LLMs. This taxonomy is not perfectly
suited for my purpose, namely because it was written before the widespread adoption of multimodal VLMs
(and, therefore, cannot hope to account for any additional risks that non-textual input and output
introduce) and because it accounts only for LLM applications and not model training. Still, it provides a
useful grounding for the present analysis.
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The Weidinger taxonomy lists 21 risks in six areas: discrimination, hate speech, and exclusion;
information hazards; misinformation harms; malicious uses; human—computer interaction harms; and
environmental and socioeconomic harms. Many of these risks apply to applications by chemical
practitioners in a generic sense. For instance, because chemistry is a relatively homogeneous field [36, 37]
where students and practitioners holding minoritized identities face marginalization and a compromised
sense of belonging [38] which can impact their academic and professional performance and retention
[39-43], risks related to ‘social stereotypes and unfair discrimination’ and ‘exclusionary norms’ are
potentially important within the context of the practice of chemistry. However, these risks are not any more
relevant to chemists than they are to professionals in other settings (e.g. mathematicians or musicians). In
the interest of brevity, I will not discuss these generic risks in detail. Rather, I will briefly mention some risks
that are particularly relevant to the core work of chemical practitioners (e.g. understanding the natural
world, developing technologies to benefit society) and their ethics.

I note that, in this text, I primarily use the term ‘risk’, as opposed to ‘harm’. The former refers to problems
or negative outcomes that may or may not occur, while the latter refers more narrowly to real negative
outcomes. The risks that I discuss may have already resulted in real harms my intent is not to investigate or
document these but merely to raise plausible concerns. I do, however, use the term ‘harm’ where it is used in
the Weidinger taxonomy to allow readers to more easily connect my arguments with that previous work.

3.1.1. Misinformation harms
‘Misinformation harms’ refer to risks caused by LLMs outputting erroneous or misleading information.
Particularly relevant to chemistry are two closely related risks: ‘Disseminating false or misleading
information’ and ‘Causing material harm by disseminating false or poor information e.g. in medicine or law’.
Studying, researching, and leveraging practical applications of the chemical sciences often involve
considerable risk to human and environmental health and wellbeing, motivating chemical ethics’ strong
emphasis on safety (see section 2.2.2 and the supplementary information). If a foundation model is used to
produce information related to chemicals, any incorrect information provided could be dangerous or even
deadly. As an illustrative—if absurd—example, an LLM used to generate recipes for human consumption
described a process that would produce chlorine gas [44], which is highly toxic to humans [45]. Incorrect
information is inherently problematic in a scientific context, as it threatens science’s pursuit of ‘reliable
knowledge’. Incorrect code generated by an LLM, for instance, could lead to erroneous results in a scholarly
publication. Though I am not aware of any specific reports of erroneous LLM outcomes influencing the
chemical literature, participants of the NSF-sponsored ‘Integrating Large Language Models into the
Chemistry Laboratory Curriculum’ workshop reported instances of LLMs producing ‘fictitious scientific
journal articles, nonexistent Python libraries, and erroneous arithmetic—some of which were initially
convincing’ [46].

3.1.2. Human—computer interaction harms

One common setting for general-purpose foundation model use is synthetic dialogue (e.g. with ChatGPT).
Weidinger et al identify four risks associated with such ‘conversational agents’ [47]. Of these, one stands out
for the work of chemical practitioners: ‘Anthropomorphising systems can lead to overreliance or unsafe use’
As Kidd and Birhane argued in a recent perspective [48], the apparent confidence and expertise of
conversational agents make human beings likely to trust them, which makes overreliance in critical
applications plausible. Notably, this risk intersects with the misinformation risks described above;
overreliance on conversational agents could not only lead a chemist to hold distorted, potentially incorrect
beliefs [48] but could also lead to safety risks and the spread of misinformation.

3.1.3. Environmental and socioeconomic harms

Finally, of the environmental and socioeconomic risks associated with foundation models like LLMs, two are
particularly relevant to chemistry: ‘Environmental harms from operating LLMs), referring to the direct
energy [49, 50] and water consumption [51, 52] of foundation models, and ‘Disparate access to benefits due
to hardware, software, skill constraints, which suggests that the benefits of foundation models will be
concentrated in the hands of those with (particularly economic) privilege.

LLMs and other generative models require immense quantities of energy and water for training and
inference, and the increased use of graphics processing units for ML has directly been implicated in rapidly
increasing energy consumption by data centers [53]. In principle, the energy to power data centers could be
provided by renewable sources, but in practice this is not often the case, and many data centers rely on fossil
fuels for power [54]. In the recent explosion of interest in ‘AI’, many companies in the data and tech sectors
are actually becoming less sustainable, increasing rather than decreasing their greenhouse gas emissions [55].
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One might contest the severity of foundation models’ environmental risk on either a local or a systemic
level. On the local level, one might say that, by using a foundation model, they can avoid greenhouse gas
emissions and other environmental harms. This argument might be made by a chemical practitioner using
an LLM to make some prediction of a chemical property for which they would otherwise need to perform an
experiment. Though using a foundation model has an environmental cost, there might be a net positive
effect if other environmental harms (e.g. the use of toxic or environmentally harmful chemicals) are avoided.
The potential for a relative improvement in environmental impact is further discussed in section 4.1.2.

On the systemic level, one might take the long view. It has been suggested that foundation models could
dramatically accelerate human progress, including in science [56, 57]. Yes, right now foundation models are
(somewhat literally) bleeding the Earth dry, and yes, they are worsening the ongoing climate catastrophe, but
what if these models eventually lead to breakthroughs in climate technologies and sustainable energy? I
concede that this might be true, and ‘A’ technologies may have environmental benefits in the future.
However, it is dangerous and irresponsible to ignore the concrete and real harms of environmental
degradation and climate change today [58, 59] because of a speculative future.

While the risk of disparate access is real, I note that the potential inequity in foundation model access
within chemistry is not dissimilar to the inequity in access to other major pieces of equipment. In fact,
depending on how one needs to interact with foundation models, it is possible that these models are more
accessible than other chemical equipment. For instance, there are zero synchrotron light sources on the
African continent [60], significantly limiting African researchers’ ability to perform advanced x-ray
characterization, but it is facile to access the Internet in Africa and, by so doing, access ChatGPT’s
applications programming interface (API) or Web interface. For more advanced or in-depth applications, the
relative equity in access between experimental equipment and foundation models is less clear, as training a
generative foundation model often requires many high-performance computing nodes with graphics
processing units [61], and such large-scale computing resources may be inaccessible or excessively expensive
for those in low-resource environments.

3.2. Threatening science’s ideals

3.2.1. Objectivity

Computational and data-driven models are often praised for their objectivity [62]. However, generative
foundation models are informed by human subjective biases—including hegemonic biases against
marginalized groups [63—72]—and reproduce these biases in their outputs. Though ML models, lacking
agency, cannot hold feelings or beliefs themselves, their behavior (i.e. output at inference) is deeply impacted
by the biased feelings and beliefs of the humans whose thoughts are reflected in the models’ training data. In
this way, generative foundation models intrinsically lack objectivity. But how do generative foundation
models impact the objectivity of their users—for the present work, (chemical) scientists?

Regardless of how biased foundation models are, they have no power to coerce users to act based on
model biases. However, foundation model use may make it more challenging for a scientist to approach
objectivity. As Kidd and Birhane explain [48], human users are susceptible to internalizing model biases.
Because users typically interact with generative models like LLMs and VLMs when they are open to learning
something new or lack necessary information, their beliefs are particularly open to influence at the time of
interaction [73]. If users view models as objective sources of accurate information—as they might if they are
using a generative model to answer questions—then it is possible that the model bias will be transmitted to
the user and influence their behavior without them even realizing that such transmission is taking place.

The risk of foundation models introducing biases or amplifying the existing biases of scientists can be
mitigated, for instance if they, as foundation model users, engage in mindfulness and reflection [74] as they
receive model outputs and cross-reference with reliable sources [75]. At the same time, foundation model use
is associated with reduced critical thinking [76], weakened reasoning, and reduced depth of engagement with
information [77], which would seem to suggest that foundation model users are unlikely to take on the
added cognitive effort required for bias mitigation. In sum, the ideal of objectivity is violated by generative
foundation models themselves, and such models threaten the objectivity of scientist users.

3.2.2. Honesty
As I alluded to in section 2.1, the ideal of honesty can be violated in two ways: by making untrue statements
and by omitting true statements.

While models like LLMs and VLMs have been described as ‘lying’ or ‘hallucinating’ [78, 79], this
misrepresents the models’ behavior. To lie, one must say something as true while knowing or believing it to
be false [80]; to hallucinate, one must make a flawed perception of reality [81]. Generative foundation
models have no internal notion of truth and cannot directly perceive the world in either a flawed or unflawed
way. It is therefore more precise to describe LLMs, VLMs, and the like as ‘bullshit’ machines [82], using
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Frankfurt’s terminology [83]. That is, they produce outputs with no concern for truth. Although they do not
lie, by bullshitting, these models frequently produce flawed or untrue outputs.

Using a tool that produces statistically likely text (as opposed to directly obtaining accurate information
from a credible source or using a tool that reliably produces accurate and precise results) is dubious in the
context of a truth-seeking enterprise like science and makes the effort of approaching the ideal of honesty
more fraught. If scientists using these models are not careful, they could develop flawed understandings or
beliefs and communicate falsehoods, thus failing to engage in truth-telling. This could occur in multiple
settings, including querying foundation models to answer some question about the world and generating
code which could produce results that appear to be correct but are based on flawed algorithms.

3.2.3. Openness

Openness, as the term is used in the National Academies’ scientific ideals, ‘refers to the value of being
transparent and presenting all the information relevant to a decision or conclusion’ [22]. Openness is related
to, predicated on, but distinct from honesty. Transparency allows others to reproduce and build on the
results of the past. When data, code, and methods are openly, transparently disclosed, external parties can
also critically evaluate a scientific work, identifying mistakes or misconduct (including failures in
truth-telling, e.g. fabricated data). Transparency and openness are key to science’s ability to self-correct and
to maintaining trust within the scientific community as well as between science and the broader public.

Transparency is a serious issue for generative foundation model use. First, models themselves vary
significantly in their openness. On the one hand, there exist models such as LLaVA [84] that release their
training corpus, source code, model parameters, training procedure, and relevant benchmarks. Users,
researchers, and other interested parties can, in principle, interrogate these ‘open source’ or ‘fully open’
models to understand model behavior or to reproduce results. On the other extreme, some models (e.g.
GPT-3) [1] are essentially opaque to users; users can interact with the model through an API or public
interface but are given little information about the model’s implementation or training. Between these two
extremes are models that are moderately transparent, such as the ‘open weight’ models that disclose
pre-trained parameter weights but withhold other important details (e.g. the training corpus or training
methodology) [85].

Even if a scientist, using a foundation model to generate some text or code or make some prediction,
aimed to be completely transparent in communicating their findings, the models that they use might
frustrate openness and downstream effects like reproducibility. If a researcher using an opaque LLM reported
what model they used, when they used it (i.e. what version they used), and what prompt they used, their
findings may still not be reproducible if that model is no longer available (e.g. if only newer versions are
available through the model’s API).

The ‘black box’ nature of large deep learning models also somewhat challenges efforts towards openness.
Let us say that a scientist uses a fully open LLM, and let us further say that the scientist discloses that they
used this model and describes how they have interacted with the model. In this case, the model itself, being
open source, is open to interrogation. In principle, others can try to train or fine-tune a new model using the
original methods, or try to reproduce the scientist’s results, though this may be limited by the frequently high
computational costs of training generative models. Even in this ideal case, the process by which the model
works is opaque even to the user. This is in contrast with most scientific tools, such as spectrometers and
microscopes, but it is not at all unique to generative foundation models, as most deep learning models can be
described as ‘black boxes’ that are difficult to understand or explain.

3.2.4. Accountability

As noted above, generative foundation models are ‘black boxes’ The opaqueness of model behavior, even if
the model code, training data, and training procedure are transparently disclosed, makes explaining and
justifying what one has done challenging for scientists aspiring towards accountability.

It is also possible that less scrupulous scientists could use foundation models to avoid accountability,
using excuses along the lines of, ‘It was not me, it was the machine!” At least within the context of scientific
publishing, accountability diffusion does not seem like a serious problem. A number of journals and
publishers have already provided ethical guidance reaffirming that authors must remain individually and
collectively accountable [86, 87], even if they use generative foundation models. As long as publication
outlets consistently apply and enforce their guidelines, accountability can be maintained.

As we will see below, when generative foundation models are used to direct scientific processes (e.g.
automating experiments), additional problems related to accountability arise.
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3.2.5. Fairness

There are three elements to the ideal of fairness as I have paraphrased it in section 2.1: that criteria used for
judgment and decision-making are clear, that they are equitable, and that the same criteria are used
consistently.

Considerable effort has been made recently towards improving the ‘reasoning’ capabilities of generative
foundation models. The resulting ‘reasoning’ models, including the o1 and 03 models from OpenAl and the
R1 models from DeepSeek, can provide verbose explanations justifying their outputs. Ostensibly, this would
suggest that judgments and decisions obtained from such ‘reasoning’ models are clear. Unfortunately, the
clarity provided by such explanations is misleading. These models can convincingly explain why incorrect
solutions are correct [88]. Moreover, as Sarkar explains [89], what we call foundation model ‘explanations’
are not really explanatory (Sarkar prefers the term ‘exoplanations’), in that the text generated for the models’
justification does not actually reflect how the model obtained its judgment or answer. Because the
‘explanations’/‘exoplanations’ of ‘reasoning’ models are meaningfully disconnected from the model’s final
answers, it is also unlikely that the stated criteria and explanations used by foundation models are consistent.
Indeed, model inconsistency has been widely reported in the natural language processing community
[90-93].

Finally, generative foundation models do not equitably make decisions. The same intrinsic biases and
prejudices that threaten or violate the objectivity of foundation models (see section 3.2.1 above) make the
models unfair.

The use of an unfair model, as described here, does not in and of itself make a scientist’s behavior unfair.
There may be applications of generative foundation models where the aforementioned problems regarding
clarity, consistency, and equity are not significant or relevant. With this said, the ideal of fairness is
threatened whenever generative foundation models are used to answer questions, make judgments, or make
decisions, which is a major goal of state-of-the-art ‘reasoning’ models and, as will be described below, a
major application of foundation models in chemistry.

3.2.6. Stewardship

In this section, I have argued that foundation models lack objectivity, bullshit rather than consistently
producing truthful statements, are variably opaque, and are in many respects unfair. These flaws, combined
with the risks identified in section 3.1, undermine the ideal of stewardship.

Science functions on an assumption of honesty [22]. We as scientists often believe what we read in
academic journals or hear in seminars and conference presentations without confirming through
independent observations because we assume that those involved in the studies that we are reading about or
listening to are truth-telling individuals who are being transparent and not omitting significant details.

The risk of misinformation associated with generative foundation models calls this trust into question. If
one believes that a piece of scientific work was generated in full or in part by a foundation model, one might
reasonably suspect that there are flaws in the information presented. Note that this line of inquiry and
skepticism does not require one to assume that any researcher intends to harm others. It only requires the
belief that researchers are willing to cut corners to publish, which, given increasing demands to ‘publish or
perish’ [94, 95] in an increasingly tight academic job market [96], is plausible.

If the mutual trust that undergirds scientific inquiry is disrupted, then ‘every scientist for themselves’
could become the norm, with more and more time being spent trying to verify claims rather than using
established studies to move one’s own work forward. Indeed, in the most extreme (though unlikely) case of
widespread distrust, science could cease altogether to be a community effort if researchers feel that they could
more effectively produce reliable results in isolation than by consulting a flawed and unreliable literature.

By the same token, the use of foundation models has the potential to damage public trust in science if the
public has reason to believe that statements made by scientists are becoming less reliable. Such a loss of
trust—or, said another way, such a breach of the public’s confidence—would be damaging for society as a
whole, as public trust in science is associated with better public health outcomes [97] and stronger action
related to climate change [98].

Even outside of eroding trust via bullshit, foundation models can risk the ideal of stewardship. LLMs and
VLMs frequently produce plagiarized text [99, 100]. By repeating ideas without appropriate attribution,
foundation models can damage relationships within the scientific community, erasing researchers’
contributions and implicitly eliminating them from scientific conversations. Finally, the unsustainable—and
rapidly growing [53, 55]—energy and water use required for generative foundation models worsens relations
between scientist users and the environment.
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3.3. Professional chemical ethics of generative foundation models

While it is deeply troubling in just how many ways and to what extent foundation models challenge science’s
ideals, it is hardly surprising that they are not in full alignment. As I noted above, ideals are aspirational and
do not necessarily represent reasonable expectations. Even so, foundation models also go against or threaten
several of the ethical norms of the chemical profession(s).

The preceding discussion has already alluded to threats to or violations of several of the ethical
requirements laid out in section 2.2.2. Generative foundation models do not prevent chemical practitioners
from ‘[treating] others fairly] but the intrinsic biases present in foundation models and reflected in model
output (section 3.2.1) hardly ‘[minimize] the impact of bias’ Use of generative foundation models further
risks violation of the requirement for chemical practitioners to ‘Be honest and forthright in their professional
and scientific communication, avoiding plagiarism, misrepresentation, fraud, and fabrication or falsification
of results’. As I have discussed (section 3.2.2), models like LLMs, while not lying per se, nonetheless make
frequent untrue statements. They also plagiarize in their outputs (section 3.2.6). It is therefore possible for
any chemical practitioner using generative foundation models in their scientific communications to (perhaps
unintentionally) engage in forms of dishonesty. The massive resource burden of generative foundation
models (section 3.1.3) additionally makes their use incompatible with the norm of ‘[protecting] the
environment’ and ‘[working] towards sustainability’.

Generative foundation models may also pose some risk to ‘the respectability of the chemical sciences’.
However, this depends on public perception of such foundation models and the information that they
provide. As I discussed in section 3.2.6, a belief that scientific statements are unreliable could break the trust
between chemical scientists and the public.

This is not to say that generative foundation models are unethical with respect to every aspect of chemical
professional ethics. Foundation model use has little impact on a number of professional ethical norms. For
instance, take the requirement that chemical practitioners ‘Disclose conflicts of interest and seek to minimize
the impact of these conflicts of interest on their work’. Use of ML models introduces no significant conflicts
of interest in the general case, and even where conflicts of interest do arise, the nature of such conflicts is not
necessarily specific to foundation models. A chemist researching VLMs while having a major stake in a
company developing or making use of VLMs has a conflict of interest in much the same way as a biochemist
who founds a biotechnology company in the area of their research.

In some ways, generative foundation models can even be said to be in alignment with chemical
professional ethics. The large and growing number of peer-reviewed publications at the intersection of
generative foundation models and chemistry would suggest that not only do the researchers performing and
communicating such research believe that it helps to ‘Advance scientific knowledge and understanding) but
that others in the scientific community agree.

It is also possible to consider that adherence to chemical professional ethics in some areas might mitigate
the ethical risk and harms of foundation models in other areas. Notably, by ‘[engaging] in critical oversight’
of work making use of or examining generative foundation models, researchers can potentially mitigate
misinformation risks. As a concrete example, if a chemical practitioner used a generative model to draft a
document (say, a safety data sheet or a scholarly manuscript) for publication, the practitioner themselves
should critically examine the text that has been generated and review it for mistakes. External parties (e.g.
other chemical practitioners engaged in peer review) should also critically review the document before it is
published. Even if the original text is deeply flawed, the final document resulting from this process of
oversight and revision could be free from errors.

4, Chemical foundation model use

A number of thorough reviews have been written on the uses of general-purpose generative foundation
models in the chemical sciences and chemistry-specific foundation models [101-105]. Here, rather than
repeating this work, I will briefly and non-exhaustively survey some areas where generative models (mainly
LLMs) can be and have been used, namely, literature review and text generation; chemical classification and
regression tasks; laboratory automation; and education. I will then discuss chemical foundation models. In
doing so, I point to ethical problems and how these models, in their chemical applications, align or fail to
align with scientific ideals and chemical professional ethics.

4.1. Applications of general generative models in the chemical sciences

4.1.1. Literature review and text generation

Many applications of generative foundation models in the chemical sciences share significant similarities
with applications in other areas. For instance, there has been considerable interest into using LLMs for
chemical information querying and question-answering tasks [106]. LLMs appear to be particularly useful in
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generating structured data from unstructured text [7, 107], which is beneficial in e.g. constructing databases
of synthesis recipes. Alone, LLMs are not well equipped to answer complex questions, particularly when
calculations are required, but models that can generate and execute code through external tools are
considerably more effective [6].

Information extraction and question answering are domains where misinformation risk is high. While
providing LLM ‘agents’ with external tools decreases the likelihood of erroneous model outputs [108, 109],
such false statements cannot be entirely avoided [110, 111].

The risk of misinformation threatens the scientific ideals of objectivity, honesty, and stewardship, as well
as the chemical ethical norm related to honest communication of scientific results. These risks are elevated
when the text generated by an LLM or similar model is used in materials for publication, a phenomenon
which is becoming more common in the scientific literature [112, 113]. Relatedly, the risk of plagiarism from
e.g. LLMs and VLMs becomes relevant when such models are used to generate text for publication or
dissemination, further straining the ideal of stewardship by failing to recognize the work of other researchers
and going against a specific, explicit ethical prohibition.

Tasks which rely on an LLM ‘interpreting’ or ‘summarizing’ text and generating unstructured responses
are also open to model biases. This presents an additional challenge to scientific objectivity—even a
well-meaning scientist who works hard not to let their personal biases impact their judgment and behavior
could be undermined if the text generated by their foundation model tool is heavily influenced by intrinsic
biases.

Finally, fairness is an issue when foundation models are used for literature review and writing. As I
discussed in sections 2.1 and 3.2.5, the ideal of fairness relates to decision-making. Whenever decisions must
be made the criteria must be clear, equitable, and consistent. Literature review and writing are processes
which require significant decision-making at all stages. In a literature review, a researcher (or LLM) must
decide what information is relevant and what is irrelevant, what ideas to emphasize, how to resolve possible
conflicts or contradictions in the literature, and more. In scientific writing, decision points are even more
plentiful, from who to cite and what tone to use to how to present an unexpected data point that goes against
a statistical trend. The abundance of intellectually and epistemologically critical decisions makes applications
of LLMs and similar foundation models problematic; after all, generative foundation models are intrinsically
unfair, lacking clear judgment criteria, being inconsistent in applying such criteria, and failing to make
judgments equitably (section 3.2.5).

4.1.2. Classification and regression tasks

Recent efforts have considered if general-purpose foundation models can act as substitutes for specialized
chemical and materials ML models. The idea is simple: if, by being trained on a huge corpus including the
open literature, an LLM or similar model has some underlying ‘understanding’ (i.e. representation) of
chemical concepts, then it should be possible to fine-tune these models to make arbitrary predictions about
chemical entities. It appears that LLMs are able to compete and in some cases even exceed small,
single-purpose ML models when available data are scarce [114]. In particular, LLMs seem to excel at
classification and struggle somewhat more on regression and generation tasks [106]. When ample data are
available, however, LLMs do not provide significant benefits.

Applying generative foundation models for chemical classification and regression tasks may be more
ethically sound than using such models for text generation, as described in section 4.1.1 above. In particular,
the environmental impact of generative foundation models could be less severe (in relative terms) for
classification and regression than for other applications of the same models because, in the absence of
generative foundation models, chemical practitioners would still train and use an ML model and incur the
associated environmental costs. Though it is likely that such specialized ML models are considerably less
expensive for both training and inference than generative foundation models (a review of chemical ML’s
energy and water demands has not, to the best of my knowledge, been reported), the cost of data generation
necessary to train specialized models to an acceptable level of accuracy could at least in some cases outweigh
this difference in environmental impact for the models themselves.

Given that, in this case, practitioners are explicitly and knowingly making predictions about potentially
unknown quantities, the model results for classification or regression are likely to be scrutinized. This is in
contrast to question answering tasks, where the user queries a model to obtain some ostensibly true
information which they believe to be known and available (e.g. in the scientific literature). Thus, generative
foundation model-based classification and regression may be somewhat less vulnerable to misinformation
risks. However, if a generative foundation model makes an erroneous prediction, the user will typically be
less able to explain why the model erred than if they had used a more specialized classification or regression
model (see section 3.2.3); this is especially true for users of opaque models. This limits the possibility for
accountability and potentially frustrates efforts towards oversight.
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4.1.3. Laboratory automation

As part of a growing movement towards automated high-throughput experiments and ‘self-driving
laboratories’ [115, 116], LLMs have been used to direct complex chemical processes. To accomplish this, a
model is given access to an API for a laboratory automation system, which could control a robot or other
instrument or could send instructions to an existing automated laboratory. Thus far, this approach has been
demonstrated on well-studied systems. Boiko et al [8] applied their LLM-based laboratory automation
system, Co-scientist, to optimize Suzuki and Sonogashira cross-coupling reactions, while Bran et al’s
ChemCrow [109] demonstrated the ability to synthesize non-trivial products such as
N,N-diethyl-meta-toluamide (DEET). In the area of optimization, LLM-based approaches appear to be
competitive with the more traditional Bayesian optimization [8]. It is unclear how models like ChemCrow
and Co-scientist, which in addition to laboratory APIs can access the chemical literature through the
Internet, will be able to generate and execute experimental plans to study truly novel chemical or materials
systems for which no literature recipes exist.

Granting an LLM control of physical laboratory tools presents many novel ethical concerns. First, it poses
LLMs as dual-use technologies in the context of chemistry [117]. Just as they could be used for benign
purposes like synthesizing DEET, they could be used to harmful ends. Boiko et al found that LLMs such as
GPT-4 could be directed to synthesize compounds that are dangerous or illegal if given an appropriate
prompt [8], bypassing the model’s ‘guard rails’. While this does not introduce a new capability for
experienced chemical practitioners (i.e. a chemist likely already has the necessary knowledge to synthesize an
illegal drug or chemical weapon), it does considerably lower the barrier for non-experts to undertake
harmful chemical projects. In fact, even if a chemical LLM ‘agent’ like ChemCrow is not connected to
laboratory automation equipment, the ease with which it proposes feasible synthesis recipes potentially
lowers the barrier to synthesizing harmful and/or illegal chemical products. Because chemical practitioners
have an obligation not only to promote and advance beneficial applications of chemical technologies
technologies but to prevent misuse, additional efforts must be taken to minimize the risk of harm caused by
LLMs and related models as dual-use technologies.

LLM-based laboratory automation further presents significant ethical questions around safety. In the
contemporary laboratory, chemical practitioners are generally required to receive safety training and
certification before using specialized equipment or handling dangerous chemicals [118, 119]. Junior
practitioners are also typically supervised by more senior practitioners to ensure that they are conducting
their work safely and appropriately. These requirements do not guarantee safety but provide a form of
accountability and oversight, in line with scientific ideals and chemical professional ethics.

As Boiko et al and Bran et al have shown [8, 109], LLMs can perform chemical procedures entirely
without human intervention. But since these models lack agency, they cannot undergo safety training, receive
certifications, or be held accountable for unsafe behavior. Considering this, one could ask: what safeguards
are in place to protect the safety of humans and the laboratory environment when LLM ‘agents’ are in the lab?

One answer would be that appropriately trained chemical practitioners should oversee all procedures
conducted by tools like ChemCrow and Co-scientist. In this case, the LLM is essentially treated as a junior
practitioner that has not yet sufficiently demonstrated their trustworthiness. This is a reasonable course of
action but would somewhat defeat the purpose of laboratory automation. One might argue that, by
fine-tuning models on safety procedures and equipment documentation, adherence to safety can be
guaranteed, but this confidence is misplaced. As I have already discussed, LLMs unavoidably produce
erroneous outputs (which, in this context, could mean unsafe outputs) and can go against their training (as
demonstrated by Co-scientist being ‘tricked’ into producing harmful and illegal substances).

4.1.4. Education

Some groups have advocated for the use of generative foundation models (mainly LLMs) in educational
settings [120]. In the context of the chemical sciences, proposed applications include: (1) assisting instructors
in course and lesson planning [121, 122]; (2) automating or accelerating grading and evaluation [46, 122,
123]; (3) playing the role of ‘tutors’ or ‘virtual teaching assistants’ by providing students with direct guidance
and instruction [46, 122, 124]; (4) helping students to study [46]; and (5) assisting students in completing
course assignments [46, 122, 125-127]. These diverse educational settings raise different ethical questions
and have different possible benefits and harms, so I will consider them one by one.

Instructor assistance: Du et al [122] in their perspective on LLMs in chemistry education, identify two ways
that instructors might use LLMs for preparation: LLMs could assist in content creation, and they could
‘simulate pedagogical scenarios, with LLM ‘agents’ taking on the role of students. The benefit of LLMs for
content creation appears dubious and limited at best. Clark et al [121] found that LLMs could not generate
useful content themselves (as assessed by instructors), even on the subject of historical experiments that are
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likely well covered in LLM training data, but the models could assist in areas like generating lesson outlines
and suggesting additional learning materials. The possible benefit of LLM simulation of instructor-student
interactions is more difficult to evaluate. LLM simulations could, in principle, help to train instructors and
make them better prepared in their interpersonal interactions; however, to the best of my knowledge, such
methods have only been prototyped [46] and have not been widely deployed or closely studied in the
intended setting.

Because instructors are presumably experts in or at least knowledgeable of the subjects that they teach,
they are unlikely to be convinced by any bullshit produced by an LLM assistant. I therefore judge the
misinformation risk of LLMs for course and lesson preparation to be low. However, the ethical risks and
harms of model social biases (section 3.2.1) become salient when LLMs are used for educational simulations.
Given LLMs’ penchant for reproducing hegemonic prejudice in their outputs, it is possible that the synthetic
students represented by LLMs will either reflect dominant social groups (failing to model the diverse
perspectives of the student body) or else will present minoritized students using stereotypes, thereby
potentially biasing the instructors using the LLM for training and preparation. Applications based around
instructor assistance thus potentially threaten the scientific ideals of objectivity and fairness and the
professional ethical requirement to minimize the impact of bias.

Grading and evaluation: Multiple recent publications [46, 122] have suggested that LLMs could assist in
designing student assessments, automate grading, and provide feedback to instructors.

Detailed feedback is essential for student learning [128], but providing feedback is costly, requiring a
significant time investment from instructors [129, 130]. This is especially true for large classes, which are
common in the chemical sciences [131, 132]. It is understandable why instructors with limited time might
turn to technologies like LLMs to automate student evaluation and feedback. Unfortunately, there is no
obvious and significant benefit to using LLMs for student assessment. While it is true, as Du ef al point out
[122], that automated grading could eliminate human bias, it is doubtful that LLM-based grading would
reduce grading bias overall, given the intrinsic biases embedded in LLMs. Similarly, LLM grading would
eliminate human errors but would introduce errors based on erroneous LLM output [123]. The authors
suggesting that LLMs could accelerate grading have further failed to make a convincing comparison to
existing automated grading systems that do not rely on LLMs [133, 134].

As I discussed in section 3, there are significant risks and ethical problems associated with these models
in general, and some, such as unsustainable energy and water use, are presently unavoidable. If there is no or
very limited benefit to using LLMs for student evaluation, LLM use in this area cannot be ethically justified.

There may be some benefit to instructors applying LLMs to evaluate themselves. Currently, instructors
(at least within higher education) mainly receive feedback from student evaluations given at the end of the
course [135, 136]. This paradigm has a host of problems, from reflecting significant prejudice against
marginalized instructors (e.g. women and people of color) [137, 138] to low participation rates, selection
bias [139], and ease of over-interpretation [140]. Some instructors also resist student feedback, viewing
students as insufficiently knowledgeable to judge their education [141]. Even if these varied and significant
issues could be addressed, end-of-term evaluations fundamentally do not allow instructors to improve their
teaching as they go along through a course. LLMs could provide rapid feedback at any point during a course
while avoiding some of the problems associated with student evaluations. Viewed as a supplemental means
for instructor development and self-improvement, LLM-based instructor evaluation could aid chemical
practitioners in fulfilling their obligations to engage in education and critical oversight.

Virtual teaching assistants: Much of the focus on LLMs in chemical science education has been placed on
virtual teaching assistants. According to proponents, these LLM ‘agents’ could help answer student questions
[124], help students interact with technical documentation, and even oversee students in during hands-on
laboratory experiments [46, 122].

Question-answering is more problematic for students than it is for instructors. Students, by definition,
are non-experts who may lack basic understanding of the course material. They are therefore ill-equipped to
distinguish between true and false information. Misinformation risk, coupled with the human—computer
interaction risk of overreliance (section 3.1.2), could lead to a disaster for student understanding. Indeed,
there is considerable risk not only of LLMs providing erroneous information but doing so in a manner that
students are likely to believe. Yik and Dood [124] found in their study on LLM descriptions of reaction
mechanisms that the model explanations were often subtly wrong but provided with a high level of
sophistication, lending them an air of authority. Providing LLM ‘virtual teaching assistants’ presents a
plausible hazard to student education, going against a key chemical ethical norm.

Most alarmingly, LLMs have been suggested as virtual laboratory assistants, providing students guidance
on laboratory protocols and safety and monitoring student activities [46, 122]. Teaching safe laboratory
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procedures is essential to students in the chemical sciences; indeed, teaching safety skills is a core goal of any
laboratory course. At the same time, safety and laboratory procedures are areas where small mistakes (e.g.
adding water to acid vs. adding acid to water) can lead to significant health risks. By their design, LLMs
cannot be guaranteed to provide only accurate safety information, creating an unacceptable risk to student
health and wellbeing. In particular, LLMs are prone to producing outputs that are incorrect but which appear
trustworthy and convincing, a phenomenon known as ‘adversarial helpfulness’ [88]. Adversarial helpfulness
makes it likely that LLMs will produce subtly but dangerously incorrect guidance that students are likely to
believe, as in the example of water and acid given above. While human instructors are also fallible, they can
receive certifications demonstrating their ability to adhere to appropriate protocols and can be held
accountable if mistakes occur. On the other hand, an LLM, lacking agency, cannot be held accountable for
any erroneous safety information that it provides.

Study assistance: Similar to virtual teaching assistants that provide detailed but incorrect explanations,
LLM-based tools for studying have a high risk for misinformation. Because of the limited background of
chemical science students, this misinformation is likely to lead to flawed student understanding and hamper
student education. Moreover, as I noted in section 3.2.1, use of LLMs is associated with a reduction in critical
thinking and engagement with information. This suggests that, even if an LLM provided accurate
information, students may not use LLMs effectively to gain a deep understanding of course material.

Tools for student assignments: Finally, LLMs have been suggested as a tool for students to use to complete
course assignments, including developing models [127] and writing laboratory reports [46, 122, 125, 126].
Particular emphasis has been placed on the models’ abilities to generate code and aid in writing.

A common argument in favor of LLMs as education tools is that, because LLMs can effectively generate
code, students will not need to learn computer programming and can instead focus on understanding the
core chemical material [122]. This argument is flawed and misleading. It implies that, by using LLMs instead
of conventional programming, students will need to learn fewer extraneous skills. In reality, students will still
need to learn a new non-chemistry-specific skill, namely the skill of effectively prompting LLMs. It is widely
recognized that the performance of LLMs is heavily dependent on the prompting strategy used [142, 143],
including in chemical contexts [124], and Subasinghe et al [126] found that, of the students surveyed in their
study using LLMs for data visualization, 90% found the experience ‘challenging’. The use of LLMs may not
even eliminate the need to learn to program, as students may need to double-check LLM-generated code to
ensure correctness. Validating this point, Subasinghe et al found that LLMs, when prompted to analyze and
visualize a dataset, sometimes generated code and associated plots using fabricated data. This not only
produces an incorrect result but might inadvertently cause a student to commit academic misconduct—a
clear violation of the ideals of honesty and accountability as well as several professional norms.

With regard to writing, Du et al [122] suggest that LLMs ‘aid in cultivating critical thinking in students),
but this is in contrast with the initial evidence that links LLM use with a reduction in critical thinking [76,
77]. LLMs, used to generate text for an essay or manuscript, will also sometimes plagiarize, which is explicitly
prohibited in the framework of chemical professional ethics described in section 2.2.2 and further
undermines the ideal of stewardship by erasing the contributions of previous authors. There may be some
permissible applications of LLMs in student writing (e.g. correcting grammar), and these applications could
even lead to positive ethical outcomes. For instance, access to LLM-based writing assistance could benefit
studenst who are learning and writing in a language in which they are not fluent. Even still, the ethical risk of
assigning these tasks to LLMs is weighty.

4.2. Chemical foundation models

4.2.1. What are chemical foundation models?

The term ‘foundation model’ is somewhat ambiguous, and multiple definitions have been put forward [144,
145]. In the meaning that I use here (see supplementary information), the key features of a foundation
model are that they are trained (or pre-trained) on vast datasets and that they can be applied (directly or via
fine-tuning) to many diverse tasks. Depending on the domain, what qualifies as a ‘vast’ dataset or ‘diverse’
tasks may vary. Here, discussing chemical foundation models, I consider datasets that are vast for the chemical
sciences and diverse chemical tasks. Even still, these concepts are relative and subjective, and different
researchers might reasonably hold different opinions regarding which models are and are not ‘foundation
models’

Using this definition, I argue that there already exist a number of classes of chemical foundation models.
Perhaps the most famous family of foundation models are protein models, which won part of the Nobel Prize
in Chemistry in 2024 [146]. Given a string of amino acids, these models generate folded protein structures,
thus addressing one of the greatest challenges of biology and biochemistry. In some cases, protein model
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architectures resemble LLMs. These ‘protein language models’ [105, 147] treat amino acids as tokens and
protein sequences as text. Other models, including the AlphaFold family [10, 148] and RoseTTAFold [11],
rely on other advanced ML techniques, such as equivariant transformers [149] and diffusion layers [150]. I
consider protein models as foundation models because they are trained on essentially all known protein
structures (i.e. all structures in the Protein DataBank or PDB) [11, 151] and because they can be applied to
problems including protein structure prediction [10], protein design [152, 153], protein interaction discovery
[154, 155], drug discovery [156, 157], vaccine development [158], mutation effects [159], and more.

Recent years have seen the development of so-called ‘universal’ MLIPs [12, 160]. An interatomic
potential, or force-field, is a mathematical function that calculates the potential energy of a system of atoms
in space. Rather than parameterizing expert-designed empirical functional forms [161-163], MLIPs predict
system energies and atomic forces using an ML model, commonly a graph neural network [164, 165]. By
training on data spanning the periodic table [ 166—168], ‘universal’ MLIP models can be employed to
simulate diverse chemical systems, including some very far outside of the training distribution. For instance,
the MACE-MP-0 MLIP [13] was shown to behave well (at least qualitatively) on systems ranging from
gas-phase hydrogen combustion to liquid electrolytes and many systems in between. Though most
applications of MLIPs involve energy prediction or molecular dynamics, these models can also be fine-tuned
to predict various molecular and/or materials properties [160].

While I will mainly focus on protein models and ‘universal’ MLIPs, one can point to other types of
chemical foundation models. For instance, similar to a protein language model, Cai et al created ChemFM
[169], a foundation model trained on molecules represented as Simplified Molecular Input Line Entry
System (SMILES) strings for molecular generation and property prediction tasks.

4.2.2. Risks of chemical foundation models

The chemical foundation models mentioned above avoid a number of the risks associated with
general-purpose generative foundation models (e.g. those identified in the Weidinger taxonomy). Since
protein models, ‘universal’ MLIPs, and other chemical foundation models do not model or directly generate
speech, there are no risks associated with discrimination, stereotyping, or social prejudice. These models
cannot contribute to misinformation or disinformation in any direct way, and there is little risk of the
models being anthropomorphized by users or manipulating users. The data used to train chemical
foundation models (e.g. density functional theory calculations, experimental protein structures, or SMILES
strings) are typically derived from public sources and do not contain sensitive or personal information;
together, this means that one should not be concerned about these models accidentally or intentionally
releasing private information.

This is not to say that there are no risks associated with these models. To the extent that these models are
used in critical decision-making settings—for instance, deciding which drug candidates to study or
suggesting a synthesis route—incorrect predictions could still cause harm. In the provided examples, harms
could include waste or misallocation of resources or inefficiencies; direct harm to human health and
wellbeing is unlikely, given that these models, in their present form, do not directly interact with laboratory
equipment or human subjects in a clinical setting.

The main ethical risks that these chemical foundation models introduce are environmental in nature.
Though ‘universal’ MLIPs, protein models, and their ilk are small in comparison to state-of-the-art
generative foundation models in terms of dataset size and number of parameters, they are large by the
standards of (bio)chemistry. General-purpose models often have higher energy demands than specialized
models [170, 171], suggesting that chemical foundation models likely contribute more to environmental
degradation and climate change than an average ML model in the chemical sciences.

4.2.3. Chemical ethics for chemical models
In contrast to general-purpose generative models, I find that chemical foundation models are fairly well
aligned with science’s ideals:

Objectivity: Although all datasets, including those used for protein models (e.g. the PDB) and ‘universal’
MLIPs, are informed by human bias, the outputs of chemical foundation models are not tainted by human
social prejudice. That is, a chemical foundation model output might be more or less accurate in certain areas
of the parameter space because of data biases but will not produce outputs that reflect prejudices like racism
and sexism. Moreover, these models, as they exist today, will not and cannot directly make biased or
prejudiced decisions.

Honesty: Just as essentially every dataset is biased, essentially every model will sometimes be incorrect. The
important difference between a general-purpose generative foundation model and a chemical foundation
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model is that while the former is not and cannot be designed to produce truthful outputs (section 3.2.2), the
latter can. Protein models are trained to (for instance) predict three-dimensional protein structures
comparing against experimental ‘ground truth, and MLIPs are evaluated against ab initio quantum chemical
values. As the loss and evaluation metrics of these chemical models improve, developers and users can
reasonably claim that they are more closely approximating some ‘true’ values and more reliably producing
valid outputs, at least within the distributions used for evaluation. Chemical practitioners using chemical
foundation models should still communicate the limitations of their models and recognize that they will
sometimes fail, but provided such communications are made, the ideal of honesty is not under threat.

Openness: Transparency remains an issue for chemical foundation models. As I mentioned above, the data
used to train these models are usually well defined and publicly available. However, the models themselves
are not necessarily open. As a notable example, Alphafold3 [148], at the time of its publication a
state-of-the-art protein model, was published without any of the source code being made public (the authors
did describe the model using pseudocode). This means that the authors’ claims are essentially unverifiable
and that the published findings cannot be easily reproduced. While chemical foundation models may not be
as large or complex as models like LLMs and VLMs, they are still massive ML models that can function as
‘black boxes’ (section 3.2.3), which also limits a well-meaning user’s ability to be open regarding their
methods and how their tools work.

Accountability: In section 3.2, I found that the ideal of accountability was perhaps the least problematic for
generative foundation models. Chemical foundation models are even less problematic in the area of
accountability. While generative foundation models, which can automatically take actions in digital and
physical settings, can in principle be used to diffuse accountability, MLIPs, protein models, and the like do
not directly take action in and of themselves and therefore cannot be claimed to take responsibility away
from chemical practitioners.

Fairness: Since chemical foundation models do not directly make decisions or take actions, they do not
violate the ideal of fairness. Regardless of what human biases are involved in the model’s training data,
humans are ultimately the actors making decisions based on chemical foundation models’ outputs. This does
not mean that chemical foundation models are necessarily fair or help to ensure fairness, but they are not in
and of themselves unfair.

Stewardship: While the energy and water demand of chemical foundation models has not been well studied,
it is reasonable to assume that the development and use of these models has a negative direct impact on the
environment and climate. This potentially strains relationships between chemical practitioners and key
stakeholders (section 2.2.1), namely the natural environment itself and future generations. At the same time,
chemical foundation models avoid many of the other issues around stewardship that generative foundation
models suffer from. As noted above in the discussion of honesty, chemical foundation models are often
reasonable approximations of ‘ground truth’ chemical data, and thus, their use is unlikely to threaten internal
or public trust in science.

Chemical foundation models are also well aligned with most of the professional ethical norms of the
chemical sciences. As I mention above, chemical foundation models can be incorrect but do not contribute
to misinformation or plagiarism as general-purpose generative foundation models do. As they do not
intrinsically carry social biases and do not generate speech-like text, they will not contribute to
discrimination, harassment, or other unfair social practices. They do not significantly impact chemical
practitioners’ duties related to education (i.e. these models have not been suggested or applied as
replacements for instructors or conventional educational tools) or oversight. As they do not directly create or
manipulate chemical substances, chemical foundation models are unlikely to create any direct risk to human
health and safety.

The inability of chemical foundation models to directly create chemical substances also renders the
dual-use risk of these technologies insignificant. One could certainly use a chemical foundation model to a
harmful end (e.g. designing a toxin or simulating energetic materials for weapons), but the model’s
involvement in any harmful outcomes is highly indirect. Calling a ‘universal’ MLIP a dual-use technology
would be akin to declaring a molecular dynamics code to be dual-use technology—perhaps technically true
(after all, the MD code can also be used to simulate the behavior of toxins or explosives), but not a useful
classification. From the perspective of chemical professional ethics, the main risk related to chemical
foundation models is, again, the potential for unsustainable resource use and environmental damage that
they introduce.
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5. Discussion

To this point, I have discussed foundation model ethics with reference to science’s ideals (drawing on a
published set of ideals from the National Academies) and the professional requirements of chemical
practitioners (synthesized through qualitative analysis of chemical codes of ethics). I argue (section 3.1) that
the most significant risks of general-purpose generative foundation models are misinformation, overreliance,
and harm to the environment and climate. Considering these and related risks, I find (section 3.2) that there
are conflicts between generative models and most all of science’s ideals, with the ideal of accountability being
the least obviously and severely compromised. Use of generative models also goes against several key ethical
requirements of chemical practitioners (section 3.3), though here the case is more mixed. In fact, while some
norms are clearly violated (e.g. the norm that chemical practitioners must protect the environment), it can
be argued that generative models actually support the ethical practice of chemistry in some other ways (e.g.
by advancing scientific knowledge). In contrast, chemical foundation models (by which I mainly refer to
protein models and ‘universal’ MLIPs) are in alignment with most ethical ideals and norms that I consider
here (section 4), with the main risks being possible lack of transparency and environmental harm. With these
considerations in mind, I now look forward, considering how the chemical profession(s) should address
foundation models to support the ethical practice of science.

5.1. Addressing the harms of foundation models
Considering the diverse ethical concerns laid out above, I begin my discussion by asking a simple and
necessary question: should chemical practitioners be using or supporting the use of foundation models?

If chemical practitioners are principled and committed to ethical behavior, the answer should in many
cases be ‘no’. Certainly, these models should not be used in cases where there are dubious benefits and
significant ethical risk. Based on the analysis in section 4.1, for instance, I would put forward that LLMs
should not be used in most educational settings, for answering questions, or for most writing tasks.

But what of cases where there are clear benefits to using foundation models? What about using generative
models for classification or regression tasks in data-scarce regimes (section 4.1.2)? What about using LLMs to
direct a self-driving or automated laboratory (section 4.1.3)? What about training and using ‘universal’
MLIPs (as opposed to using classical force-fields or more specialized MLIPs)? In these cases, while one could
still argue that using foundation models goes against scientific and chemical ethics, it is also reasonable to
argue that use of these models advances chemical ethics. That is, one could say that a foundation model, if
well suited to a particular task in chemistry, serves to ‘advance scientific knowledge and understanding’ and
can help ‘advance peaceful, benign, and beneficial applications of chemical science’ The tension between
conflicting ethical norms (i.e. advancing science and minimizing risk to health, safety, and the environment)
is nothing new to the chemical sciences. An appropriate, pragmatic response hinges on the extent to which
the tool in question is necessary for a particular task.

To support this line of necessity, consider some other areas where chemical practitioners use ethically
problematic tools. A number of commonly used solvents are known to be highly harmful to human health
and the environment [172]. Plastics, which also degrade human and environmental health [173, 174], are
ubiquitous in our laboratories and are a major product of the chemical industry. And cobalt, a key
component in modern lithium-ion batteries, is linked with (alleged) human rights and labor abuses in the
Democratic Republic of the Congo [175, 176]. It must be acknowledged that the nature of toxic solvents,
plastics, and cobalt-based batteries are significantly different from foundation models; however, the ethical
risks of using, say, plastics and an LLM are overlapping. Both harm key stakeholders of chemical science (the
broad public, the environment), and both go against the chemical sciences’ obligation to promote
sustainability. Moreover, as I describe in the supplementary information, software and ML models can for
the purposes of chemical ethics be thought of as ‘substances’, extending the connection between foundation
models and the examples mentioned here.

In the cases of toxic solvents, plastics, and cobalt (as well as many others), chemical practitioners are, as a
class, aware of both the significant ethical risks and harms associated with these substances and tools and
their utility. The loss of these substances and tools would even make some chemical practitioners (e.g. some
synthetic chemists or battery researchers) unable to effectively perform their professional duties and meet
their obligations. In these cases, where ethically problematic tools are deemed necessary, what can and
should chemical practitioners as individuals and the chemical community collectively do?

The main strategies being applied today involve eliminating uses of problematic substances/tools or else
replacing them with more ethical alternatives. For toxic solvents and for cobalt, researchers have sought ways
to reduce the amount needed or avoid these materials altogether, leading to the explosion of interest into
so-called ‘green solvents’ [177, 178] and Co-free battery electrodes [179, 180]. While the original materials
are still used (e.g. Co-based Li-ion batteries remain on the market and an area of research interest), the
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chemical community is largely moving towards elimination. There is also some interest in minimizing the
use of plastics [181], but there has been a greater emphasis on developing alternative chemistries that are
environmentally benign [182, 183] or identifying methods to circularly recycle plastics [184, 185], thereby
reducing or eliminating the harm caused by their waste.

By analogy, once we as a community identify foundation models (particularly generative foundation
models) as harmful or ethically unacceptable, we can seek to minimize their use. We should be asking,
‘Where are LLMs, VLMs, etc offering truly unique, necessary benefits?” and eliminating any non-‘essential’
uses. For areas where foundation models are presently necessary, such as protein folding, researchers should
seek to develop alternatives that are less harmful and/or seek out ways to substantively reduce harm. I note
that, while these changes can be enacted by individual chemical practitioners, they will be more effective if
implemented structurally, whether at the level of universities and other research bodies, chemical
professional societies, or policy-makers.

5.2. Amending chemical ethics

I have argued in this piece that, if a new technology and established ethics are at odds, then the technology
should not be used, or steps should be taken to minimize the harm done by that technology. An idea central
to my analysis but assumed up to this point is that science’s ideals and chemistry’s ethical norms remain
sound. But this is not to say that the ethical codes that chemical practitioners agree to and must abide by
should not be amended to respond to changes in technology such as the development and deployment of
foundation models.

Computational chemistry and chemical data science are in some respects ignored by existing codes,
which instead focus largely on applied, experimental chemical science (see supplementary information).
Given the growing importance of software, data, and ML models to the practice of science, as well as the
emergent ethical concerns surrounding these computational tools, further ethical guidance should be
developed. In some cases, concepts already mentioned in chemical ethical codes could be expanded to
include computational chemistry and chemical data science. For instance, where existing codes discuss the
security of chemicals and chemical equipment, they should also mention the chemical practitioner’s
obligation to (where relevant) secure sensitive data and to prevent the misuse of dual-use computational
technologies. One could also imagine the development and communication of entirely new ethical
requirements; as a rather general example, chemical practitioners could be obliged to avoid passing critical
tasks (e.g. manuscript writing, peer review, and mentorship) to ‘Al’.

Finally, many chemical codes of ethics (including most of the codes considered here) do not include any
mechanisms for what should happen if chemical practitioners behave unethically. While one can hope that
chemical professionals will follow the codes that they have agreed to and aspire to the ideals of science, there
will almost certainly be some unscrupulous or malicious chemical practitioners. Chemical organizations
would be wise to consider explicitly laying out protocols to address unethical behavior, potentially to
discourage such behavior but more pressingly to ensure that they are prepared to act when necessary. More
detailed discussion of specific amendments is outside of the scope of the present work but should be
conducted within chemical organizations and societies.

I note that reinforcing existing ideals and ethical norms through modest additions and amendments is
not the only course of action. Rather than expand chemical ethics to address the possible risks of foundation
models (among other computational technologies), chemistry and related fields could redefine what it is to
be ethical to accommodate the presence of ‘Al’ in our society and our professional lives. In a sense, this
redefinition is actively taking place. Though none of the professional codes that I discussed in section 2.2
have been significantly amended to this effect, major chemistry conferences and publications allow scientific
works based on LLMs and other foundation models with few limitations. While some publication guidelines
require that authors of a manuscript disclose if and how foundation models have been used in the writing
[87], the door remains open for stochastic plagiarism and misinformation, among other possible negative
outcomes. It is logical on the surface to trust that a manuscript’s authors will review their work to ensure
accuracy and check that all ideas have been properly attributed. However, it may not be obvious at all that a
model has plagiarized or repeated a falsehood.

5.3. Lingering questions
The present work is not meant to be definitive but instead was written to open a necessary and (until now)
largely ignored conversation. In service of this aim, I close this article by considering what I have not been
able to address and what future research—ethical and technical, theoretical and empirical—should be
conducted to help push the conversation forward and resolve some of the problems posed here.

I have chosen in this work to limit my scope to the chemical sciences, focusing mainly on chemistry and
chemical engineering. This is mainly a reflection of my own disciplinary comfort and background. As a
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chemist without significant training in ethics or philosophy, I feel equipped to tackle ethical issues in the
chemical sciences, while I recognize that I may be unequipped to address broader questions. Nonetheless,
broader questioning is needed.

As a starting point, it would be worthwhile to compare the ethics of foundation models in the the
chemical sciences, as discussed here, with those in the biomedical fields, where a body of work in related
ethical concerns is growing [19, 186, 187]. In particular, the thought put into regulatory changes in the
biomedical literature [188] may be relevant for discussions of scientific ethics. Beyond medicine, it is worth
asking to what extent the ideas presented here generalize to other areas of science and engineering.
Ostensibly all areas of science should be guided by the same ideals, but different professions may have
different norms and different priorities. As one example, though the chemical sciences are intimately
connected with and concerned for the environment (and, thus, environmental sustainability), the same may
not be said for other fields, such as astronomy.

It is also worth considering how the values of (chemical) science are or are not aligned with the values of
‘Al and ML. Are they in tension? Are they compatible at all? As a starting point, one could compare the ideals
listed in section 2.1 above or similar sets of scientific ideals with the (often implicit) values of ML
practitioners, as identified by Birhane et al’s study of ML conference papers [189]. Alternatively, one could
analyze codes of ethics for professional organizations in computer science, data science, and ‘AI’ and compare
the key ethical norms and requirements in those fields to the norms identified here.

Even staying within the domain of the chemical sciences, there are many further questions worth
exploring. A more extensive analysis of the chemical ethics of computational and data science work is sorely
needed, as is a more extensive comparative analysis of chemical professional ethics beyond the five codes
considered here. Future research should moreover consider the ethics of automated and self-driving
laboratories, particularly as they pertain to safety and security. Finally, further research should be conducted
to firmly assess the environmental costs associated with chemical foundation models and the relative
environmental cost or benefit of generative foundation models for chemical classification and regression
tasks.

While I have discussed the general practice of chemistry and associated norms, I have focused in ways
and at times on chemical researchers. How, if at all, might the conclusions drawn here change from the lens
of, e.g. an industrial chemical engineer, where, e.g. publication ethics and classroom education may not be
important, where an individual may not have control over which tools they use (i.e. they may be required to
use ‘AT’ tools by their employer), and where the interests of the employer frequently put practitioners at odds
with ethical (especially environmental) norms?

5.4. Conclusions

Like microplastics and greenhouse gases, foundation models surround us. Now that these models, from
LLMs and generative diffusion models to ‘universal’ MLIPs, have made their way into society and into
scientific practice, the chemical profession(s) must take stock, assessing their risks and outcomes under
consistent ethical standards. Here, I have begun this work, addressing the questions ‘Are foundation models
in alignment with scientific and chemical ethics?” and ‘How should chemical practitioners interact with and
around foundation models?’

To the first question, an analysis of scientific ideals and professional norms reveals a simple answer: in
many cases, no. Generative foundation models such as LLMs and VLMs violate or threaten essentially all of
science’s ideals as well as many professional ethical norms of chemical science. While chemistry-specific
foundation models, such as protein models and ‘universal’ MLIPs, avoid many of the ethical problems of
more general models like LLMs and VLMs, they still have a negative environmental impact that is at odds
with the chemical sciences’ obligations to sustain and protect the natural environment for itself and for the
benefit of future generations.

The second question—now that foundation models are a part of scientific practice, what should be
done—is more challenging. I have argued that, where foundation models do not provide significant benefit,
they should generally be avoided. This places the onus of the model users to demonstrate real need before
applying a foundation model. Drawing from the green chemistry, sustainable chemistry, and battery fields, I
further suggest that, in cases where foundation models are highly useful and/or essential for one’s work,
efforts should be taken to eliminate one’s need to use said models, for instance by identifying or developing
more ethical alternatives.

There is much more work to be done at the intersection of data science, chemical science, and ethics. I
hope that my account inspires further theoretical and technical inquiries in this nascent and much-needed
area of study.
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