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Applications of deep learning (DL) to design nanomaterials are hampered
by alack of suitable data representations and training data. Here we report

efforts to overcome these limitations and leverage DL to optimize the
nonlinear optical properties of core-shell upconverting nanoparticles
(UCNPs). UCNPs, which have applications in fields such as biosensing,
super-resolution microscopy and three-dimensional printing, can emit
visible and ultraviolet light from near-infrared excitations. We report
alarge-scale dataset of UCNP emission spectrabased on accurate

but expensive kinetic Monte Carlo simulations (V> 6,000) and use
these data to train a heterogeneous graph neural network using a
physically motivated representation of UCNP nanostructure. Applying
gradient-based optimization on the trained graph neural network, we
identify structures with 6.5x higher predicted emission under 800-nm
illumination than any UCNP in our training set. Our work reveals design

principles for UCNP heterostructures and presents aroadmap for
DL-based inverse design of nanomaterials.

Applicationsinclean energy, advanced manufacturing, biomedicine,
photonics and microelectronics increasingly demand new materi-
als with complex structures and heterogeneous composition’. In
principle, machine learning (ML) offers a strategy to accelerate
the discovery of such materials, as it has emerged as a transforma-
tional tool for the design of small molecules, bulk inorganic crystals
and even single-component nanomaterials®*. Deep learning (DL)
approaches are particularly well suited to model the behavior of
systems with large numbers of parameters, but several obstacles
hinder DL from being used to guide the discovery of the complex
materials often needed for real-world applications, including nano-
structures and composites.

First, state-of-the-artapproaches for representing materials often
fail to capture the structural complexity of nanomaterials, such as
multishell nanoparticles®* (Fig. 1a), in which nanostructure controls
energy transport’ (Fig. 1b). Nanomaterials exhibit distinct and often
superior properties compared with their bulk counterparts™™; how-
ever, the large number of features required to adequately describe a
nanoscale material (including surface ligands and the morphology,
dimensions, composition and defects of each domain) make training
on naive tabular representations computationally inefficient, in part
because they neglect physical relationships between features'. While
bulk crystals canbe represented by their unit cell coordinates and small
organic molecules by atomic coordinates, graphs or strings” such as
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Fig.1| DL approach to enable UCNP heterostructure optimization.

a, Schematic of doping heterostructured UCNPs. b, lllustration of the
importance of heterostructuring to physically separate dopants. In the core-only
particle, all dopants interact to a high degree, leading to cross-relaxation and
consequently low upconversion efficiency, while heterostructuring with Er
(orange) and Nd (green) separated into different regions doped with Yb (blue)
prevents cross-relaxation and facilitates UV emission. ¢, Two-dimensional
visualization of a heterostructured UCNP with core and shell doping levels for
Yb* (blue), Nd* (green) and Er** (orange) represented as colored slicesina
concentric pie chart. White regions represent the remaining fraction of Y** ions in

the NaYF, host matrix that have not been substituted by dopantions. d, To enable
physics-informed DL for the inverse design of UCNPs, we first construct alarge
dataset of simulated UCNPs and their upconversion (UC) luminescence spectra
using high-throughput kMC simulations. e, Then, we investigate different
representations of heterostructured UCNPs and find the best performance with
aheterogeneous graph representationina GNN. f, The resulting trained model
can predict the gradient of emission intensity with respect to each structural
parameter, enabling inverse design via gradient-based optimization of UCNP
heterostructure to maximize UV emission. n-D = n-dimensional.

the Simplified Molecular Input Line Entry System (SMILES)'®, such
atomistic representations are impractical for complex nanomaterials
because their critical features often span length scales of one to >10°
atoms and cannot necessarily be reduced to periodic subunits'*.
Recent DL approaches encode spatial information as pixels or voxels,
butthese fixed-resolution representations cannot efficiently capture
the structural hierarchy of a wide range of nanomaterials, including
those of different sizes.

Beyond the challenge of representing nanomaterials, it is also
challenging to generate datasets sufficiently large to train DL models
that can accurately predict the properties of heterogeneous, multi-
component nanostructures®. Although high-throughput experimental
and computational approaches are growing in their availability and
utility”*?*, the synthesis and simulation of complex heterostructures
is often time-consuming, limiting the scale of available datasets® and
constraining campaigns to the ‘small data’ regime where DL techniques
oftenstruggle. Modern DL models can also have difficulty extrapolat-
ing outside of the envelope of their training data, which is necessary
for the discovery of novel materials withenhanced properties. Finally,
the discovery of fundamentally new materials is complicated by the
rough response surfaces of material properties with respect to their
composition, necessitating tedious ‘needle-in-a-haystack’ searches
across a parameter space. The prediction of materials with targeted
propertieswould be substantially accelerated by surrogate models that
aredifferentiable so that gradient-based optimization techniques can

be used to direct efficient searches’. Thus, DL-guided inverse design
of complex nanomaterials would benefit from the development of
large, relevant structure-property datasets, new methods to represent
themacross lengths scales and differentiable models thatare accurate
beyond their training distribution.

Inthiswork, we develop a heterogeneous graph representation for
nanomaterials with a variable number of spatial domains, each contain-
ing multiple components that caninteract within the same domainand
acrossinterfaces. We demonstrate that graph neural networks (GNNs)
built atop such representations can accurately predict properties of
nanostructures that are far more complex than any contained in the
training dataset. As a model system, we center our investigation on
lanthanide-doped upconverting nanoparticle (UCNP) heterostruc-
tures (Fig. 1a), whose unique nonlinear optical properties have appli-
cations in biological and super-resolution imaging?®, optogenetics,
sensing, photonics?, three-dimensional printing®® and photovoltaics®.
These applications leverage the ability of UCNPs to absorb multiple
near-infrared (NIR) photons and convert theminto higher energy radia-
tion, often visible and ultraviolet (UV) light. Such nonlinear processes
aretheresult of complex networks of energy transfer (ET) interactions
between different lanthanide ions (including, Yb**, Er** and Nd*, asin
Fig. 1b). To promote advantageous ET interactions and inhibit those
that quench emission, nearly all practical implementations of UCNPs
use doped heterostructures in which a spherical core is surrounded
by one to four concentric shells, with each domain having a distinct
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Fig.2|Description of SUNSET datasets. a, Summary of the SUNSET datasets,
including excitation wavelength (4, nm), fixed versus variable nanoparticle size,
dopants used, presence or absence of luminescence-quenching surface ligands,
and scale in terms of number of data points. b, Top: graphical depiction of
SUNSET-1 heterostructures and ID versus OOD split. The OOD test data contain
206 4-shell nanoparticles. Bottom: statistical distributions of structural features

Dopant concentration, x

log,, UV intensity

in the SUNSET-1dataset. From left to right, distributions show nanoparticle
radius (R, nm), shell thickness (nm) with colored series for each region (first shell,
blue; second shell, orange; third shell, green), dopant concentration (x) with
colored series for each dopant type (Er, blue; Nd, orange; Yb, green) and log,, of
the UVintensity.

combination and composition of lanthanide ions (Fig. 1c). Due to the
large numbers of tunable structural and compositional parameters
and the complex network of ET interactions between dopants, optimiz-
ing the intensity and wavelength for such complex heterostructures
is extremely challenging®. Thus, multishell UCNP heterostructures
present astringent test for any new DL model and representation.

To train these DL models, we generated a dataset of Simulated
Upconverting Nanoparticle Spectra for Emission Tuning (SUNSET),
consisting of results from -6,000 kinetic Monte Carlo (kMC) simula-
tions of nanoparticle photophysics (Fig. 1d). Models trained on SUNSET
aimto predict photon emission within aspecified wavelengthband asa
function of UCNP heterostructure. By training on simulations of UCNPs
with up to three shells and evaluating on simulations with four shells,
we can quantify the capacity for models to extrapolate to larger and
more complex heterostructures. We find that our heterogeneous graph
representation, informed by UCNP physics and geometry, allows DL
models to achieve far higher prediction accuracy than tabular, image
and homogeneous graph representations (Fig. 1e), especially when
extrapolating beyond the training data. The differentiability of our
heterogeneous GNN (hetero-GNN) also yields gradients of emission
intensity withrespectto layer thicknesses and dopant concentrations
(Fig. 1e), which are not accessible from kMC. Our trained model thus
facilitatesinverse design of UCNP heterostructure viagradient-based
optimization (Fig. If), identifying superior UCNPs with arange of sizes
and up to ten shells. When excited at 980 or 800 nm, these optimized

UCNP heterostructures exhibit exceptionally high emission between
300 nmand 450 nm, aspectral range useful for inducing photochem-
istry for optogenetic, catalytic, therapeutic and three-dimensional
printing applications. To validate these predictions, we perform
additional kMC simulations, whichindicate that our model possesses
considerable ability to extrapolate far out of distribution and can
suggest never-before-seen structures with accurate predictions of
their emission intensity, further revealing valuable design principles.
These findings demonstrate a path forward for the optimization and
discovery of technologically useful UCNPs and offer inspiration for the
development of DL representations and models that enable inverse
design for abroad range of optical nanomaterials.

Results

Dataset construction

To develop and train DL models that can predict core-shell UCNP
photophysics and ultimately enable inverse design of UCNPs with
complex heterostructures that exhibit efficient UV and blue emission
(300-450 nm), we generated SUNSET, a dataset of over 30,000 multi-
shell UCNP spectra calculated with a high-performance kMC simula-
tion package (RNMC)* optimized for chemical reaction networks and
UCNP photophysics’ (Fig. 2). SUNSET consists of four subcollections
(SUNSET-[1, 2, 3, 4]) that include different dopant ion combinations
and surface effects (Fig. 2a). While each of the subcollections provides
utility for model development and testing, we focus exclusively on
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Table 1| Model performance on the SUNSET-1 dataset

RFR FCNN CNN GNN Hetero-GNN
ID test 57.2(7.3%) 55.8 (6.6%) 17.6 (21%) 84.3(9.9%) 13.8 (1.6%)
OOD test 365.8 (36.6%) 526.6 (55.5%) 49.0 (5.2%) 89.6 (9.4%) 221(2.3%)

An overview of the performance of different models on the SUNSET-1 dataset, assessed using the MSEs (equation (5)) of predicted log,, of I,;,_y, derived from tenfold cross-validation both for
the SUNSET-11D test, containing structures with up to three shells, and for the SUNSET-1 OOD test, containing structures with four shells. The first value in each cell is the unitless MSE
multiplied by 10° for easier interpretation. The second value in parentheses is the NMSE, which is the MSE normalized by the sum of squares to yield a relative error (equation (6)). Bold text

indicates the lowest errors for each category, both of which are achieved by the hetero-GNN.

SUNSET-1in our main narrative; discussion of the SUNSET-[2-4] col-
lections can be foundinthe Methods and Supplementary Information
sections 8 and 12. We focus on SUNSET-1because this subcollection
includes nanoparticles with variable sizes and numbers of shells,
which are essential for training models capable of extrapolating to
more complex heterostructures and thereby facilitating impactful
inverse design. Further, the nanoparticle structures in SUNSET-1 are
substantially larger than in SUNSET-[2-4] (given that they contain
multiple layers, and each layer must be at minimum 1 nm thick to be
synthesizable®), and thus the vast majority of the computational cost of
SUNSET went toward the ~6,000 simulations in SUNSET-1. We note that
individual kMC trajectories often took weeks to complete, necessitating
the use of high-throughput self-checkpointing workflows (Methods;
Supplementary Fig.1).

SUNSET-1 utilizes a dopant set of Er**, Nd** and Yb* because this
combination of dopants has been used to sensitize upconversion® and
optogenetic activity® with 800-nm excitation, a wavelength that lies
inthe NIR-Ibiological imaging window. Segregation of these dopants
into different shells of UCNP heterostructures has been shown to
dramatically enhance emission®. In these systems, Nd is typically
included to sensitize the absorption of the 800-nm excitation, Er to
upconvertabsorbed energy and emit UV or visible light,and Yb to act
asaconduitto transfer energy between Nd and Er dopants that would
otherwise quench eachother viacross-relaxation ET. The nanoparticle
heterostructures sampled in SUNSET-1 are variable, with core radii
ranging from1to4 nmandup to threeshells, each measuring between
1nmand2.5 nminthickness, as depictedinFig.2b. We sample the core
radius and shell thickness from uniform distributions. Dopant concen-
trations are alsodrawn fromuniform distributions, with the constraint
that their total sum must be less than 1. To probe the extrapolatory
power of developed models, we simulate explicit four-shell nanopar-
ticles and hold them out of training data to use as an out-of-distribution
(OOD) test set. Thus, SUNSET-1as awhole has nanoparticle radii span-
ning from 1to 13.6 nm, and the brightest particle has an intensity of
~20,000 photon counts per second (cps). /,;.,y most closely follows an
exponential distribution, so we use the unitless log,,(/,is_yy) as the
target label for model training.

Representing nanoparticle structure for ML

Totrain ML models onthe SUNSET data, weinitially investigated several
existing representations for encoding the compositional and dimen-
sional features of each UCNP. Aswe summarizein Table1and discussin
more detail inthe ‘Model performance’ section, we found that standard
ML models (for example, random forest regressors (RFRs) and con-
volutional neural networks (CNNs) utilizing tabular and image-based
representations exhibited poor ability to extrapolate, with three- to
tenfold lower accuracy during OOD testing than duringin-distribution
(ID) testing.

Seeking representations and models with greater ability to
extrapolate to more complex nanostructures, we explored the use of
graph-structured representations, which have recently gained promi-
nence due to their ability to effectively capture complex relationships
(edges) between entities (nodes)**. The simplest graph representation
of aUCNPis ahomogeneous graphin which each node s labeled with

theidentity and concentrations of asingle type of dopant (forinstance,
Er)inaspecificdomain of the UCNP (forinstance, the core), while edges
encode interactions (ET processes) between dopants represented by
those nodes. However, we found that GNNs utilizing these homogene-
ous graph representations exhibited equally poor accuracy for both
ID and OOD testing (Table 1).

Reasoning that the poor performance of homogeneous GNNs
(homo-GNNs) wasrelated toinadequate representation of the physical
interactions between dopants, we developed a UCNP representation
based on a directed heterogeneous graph (Fig. 3a). Unlike the homo-
geneous graphs, dopant-dopant interactions in our heterogeneous
graphs are represented by interaction nodes that connect dopant
nodes (via edges), allowing the encoding of additional physical features
oftheinteractions. Two different types of interaction nodes are used,
intralayer and translayer, to delineate interactions between dopants
within the same geometric region (either core or shell domains) and
those in different regions, respectively. It isimportant to note that
dopant nodes are never connected to other dopant nodes, and every
interaction node connects exactly two dopant nodes. A self-interaction
node, describing interactions between different dopant ions of the
same type in the same region, has edges both from and to the same
dopant node. The use of a directed graph introduces asymmetry in
ET between two dopants (for example, Yb > Er as compared with Er >
Yb). Thisisimportant for ET processes that are not reversible, such as
nonresonant, phonon-assisted energy ET that results in irreversible
heat dissipation®.

When establishing features encoded in the nodes, we chose a
minimal set of descriptors that are most relevant for UCNPs. Dopant
node featuresinclude dopant type, dopant concentration (within the
respective region) and geometric bounds (inner and outer radii of the
core/shell domain they reside in). The interaction nodes contain the
interaction type (Yb-Er, Er-Yb, Er-Er and so on) and features derived
from the pair of connected dopant nodes—dopant concentrations and
geometric bounds. Because we explore only spherical nanoparticles
withmultiple concentricshells, layer radii fully specify heterostructure
geometry. To further account for the effect of distance and region
geometry ondopant ETs, weintroduce a quantity that we call the ‘inte-
grated interaction’ (see the Methods for an explanation).

The proposed heterogeneous graph structure lends naturally to
the use of GNNs for DL. In our hetero-GNN (Fig. 3c), we first embed
information from each node into a continuous vector space. We con-
struct the dopant node embeddings by passing the dopant type (Z)
through an embedding layer, then contextualizing the initial embed-
ding on the dopant concentration (x;) and the radii (r}nner and rlf""e')
using feature-wise linear modulation (FiLM) layers, as shownin Fig. 3d.
Likewise, to obtain the embedding vector for the interaction nodes
(Fig.3e), we passtheinteraction type (t;) through an embedding layer
and then condition on the integrated interaction using a FiLM layer. A
batchnormalizationis applied before the FiLM layer to shift the distri-
butionofintegrated interaction values. Note that ‘contextualizing’ or
‘conditioning’avector (forinstance, aninitialembedding) on another
value (for example, dopant concentration, layer radii, or integrated
interaction) with a FiLM layer is a way of combining the information
containedineachviaanoperationthatis controlled by many learnable
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Fig. 3| UCNP graphrepresentation and hetero-GNN model architecture.
a, Heterogeneous graph structure of an example two-region (core plus one shell)
nanoparticle with Yb and Er dopants. Node types: dopant nodes (green circles),
translayer interaction nodes (blue triangles) and intralayer interaction nodes
(red triangles). Node features: dopant type Z (atomic number), dopant
concentrationx (molar fraction), inner radius ™, outer radius r°"**" and
interaction type 7 (atomic number of outgoing dopant, atomic number of
incoming dopant). b, Depiction of the integrated interaction @ between two
regions V;and V;over all pairwise distances, s, parameterized by learnable
parameters, 0. Subscripts i andj denote different dopant-regionindices. For
instance,ina, Ybinthe core, Erin the core, Ybin the shell and Er in the shell would
all have distinct dopant-region indices. ¢, Architecture of the heterogeneous
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graphmodel, showing dopant node embeddings h?, intralayer interaction node
embeddings eg, translayer interaction node embeddings e?., and their updates
through heterogeneous convolution layers. The embeddings are combined
through mean aggregation into an overall UCNP embedding which is regressed
to the log,, of the UVintensity through a FCNN. d, Dopant node embedding
process, where the dopant embedding (Z) is conditioned on r*;.""e', rf“‘e' andx;
using feature-wise linear modulation (FiLM) generators (Gen.) to form the initial
dopant node embedding for dopant-region i, h?. e, Interaction node embedding
process, where features r*;,““e', rlf’”‘e' andx; for dopant-region i, ri}’“e’, r‘;”“’" andx;
for dopant-regionj, and the interaction type, 7;, form the initial interaction node
embedding between dopant-regionsiandj, el‘.).. Batch normalization (Batch
Norm) layers are used in the embedding process to stabilize training.

parameters, which often provides better expressivity and performance
than a simple concatenation or addition®. The resulting dopant and
interaction embeddings are then used as the inputs for threeiterations
of message passing (MP) based on the heterogeneous graph’s direc-
tional edges, where each MP iteration employs graph attention viathe
graphattention operator GATv2”, after which we use mean aggregation
to obtain the global latent representation. Finally, a fully connected
neural network (FCNN) is used for predicting the label, the log,, of the
emission intensity over the specified wavelength band, from the global
latent representation

Model performance

To assess the performance of the hetero-GNN described above with
respect to other models and representations, we train each on the
SUNSET-1 dataset, where our target label is the unitless log,, of the
emissionintensity from the UV-blue (300-450 nm) wavelength band,
and training data include 800-nm excited UCNPs with zero to three
shells. We evaluate the mean squared errors (MSEs) of each model
when predicting the intensities of held-out ID samples as well as for

OO0D nanoparticles with four shells (Table 1). We arbitrarily multiply
our unitless MSE values by 10° for easier interpretation. We compare
the hetero-GNN with four well-established supervised learning models:
two models (arandom forest regressor and a FCNN multilayer percep-
tron) using atabular representation; a CNN using animage representa-
tion; and the homo-GNN described above. Model hyperparameters
are provided in Supplementary Information section 9. Additional
model, representation and feature details are provided in Supplemen-
tary Information sections 4-6.

Of the five models tested, the hetero-GNN exhibited the lowest
error for both ID and OOD testing, with MSE values of 13.9 and 22.2,
respectively (Table1). TheID loss is fourfold lower than that of models
utilizing tabular representations (RFR and FCNN) and 21.5% lower than
the CNN utilizing animage representation. The fact that theimage- and
heterogenous graph-based models have the best ID accuracies demon-
strates how their representations allow them to leverage spatial infor-
mationtolearnrelationships between heterostructure and properties
and to connect the common behavior of dopantions of the same type
but located in different regions. It is notable, however, that the least
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subdivisions into UCNPs at random radial coordinates (bottom). This process
implicitly multiplies the number of unique heterograph representations of
UCNPs seen by the model during training by the number of training epochs, and
reduces OOD MSE by 25%.

accurate model for ID testing was also based on agraph representation.
The homo-GNN exhibited sixfold higher MSE than the hetero-GNN,
highlighting that the enhanced accuracy of the hetero-GNN s the result
ofiitsincorporation of interactions as nodes in the graphs.

We believe that the promotion of dopant-dopant interactions
to anode-level property specifically improves hetero-GNN perfor-
mance by elevating the prominence of interaction features during
message passing. When included as explicit nodes, the interactions
are able to alter the content of the passed messages, allowing for the
transmission of richer and more physically relevant information.
This parallels the photophysics of UCNPs, in which ET interactions
between dopants critically determine the excited state populations of
donors, acceptorsand their neighbors®>*%, driving nonlinear processes
such as upconversion, photon avalanching>* and quantum cutting*°.
By contrast, interaction features in homo-GNNs have less influence
on predictions because edge properties can only contribute to the
attention score, influencing the weighting of the messages being
passed between dopant nodes rather than the information contained
therein. The heterogeneous graph structure also enables the embed-
ding of interactions between lanthanide dopants. This embedding
introduces valuable inductive bias concerning the distinctness of
lanthanide interactions, constraining the model to treat dopant pairs
such as Yb-Er equally, agnostic to which layers they reside in, albeit
with varying strengths.

The most striking benefit of the hetero-GNNis its ability to extrap-
olate, in this case to four-shelled nanostructures not included in its
training set. When switching from ID to OOD testing, the MSE for the
hetero-GNN modelincreased by 8.3- or 1.6-fold. Thismodest increase
in loss is in stark contrast to the tabular-representation-based RFR
and FCNN models, for which extrapolation resulted in six- to tenfold
increases in the MSE, respectively. The tabular models lack the geo-
metric and relational information of the graph models and therefore
must learn the influence of the dopants in each layer independently.
Thisincreases the data demand of these models, making them prone
to overfitting and reducing their ability to predict the properties of
unseen heterostructures. Eventhe image-based CNN, which had high
ID accuracy, exhibited 2.8-fold greater loss during OOD testing. We
attribute the superior generalization ability of the hetero-GNN to its
graphrepresentation. This conclusionis supported by the fact that the
homo-GNN also exhibits very little change inloss (+6.5%) when shifting
frominterpolation to extrapolation.

Insummary, representing UCNP heterostructures as heterogene-
ousgraphsresultsinahetero-GNN that exhibits both high accuracy and
extrapolative capacity, in contrast to existing models that are inaccu-
rate (homo-GNN), poor at extrapolation (image CNN) or both (tabular
models). We have improved the OOD accuracy of these hetero-GNN
models by an additional 25% using an on-the-fly data augmentation
approach (Fig. 4) that randomly subdivides UCNPs into physically
equivalent heterostructures during training (see ‘Data augmentation
for training subdivision invariance’ section in the Methods and Sup-
plementary Information section11).

Nanoparticle optimization

The hetero-GNNis fully differentiable and takes the features that define
the UCNP heterostructure (layer radii and dopant concentrations) as
explicitinputs. For optimization, the hetero-GNN acts as a surrogate
model for kMC that is not only orders of magnitude faster, but also
provides derivatives of a predicted label with respect to structural
features (which are inaccessible with kMC), enabling the use of more
powerful gradient-based optimizers to identify UCNP structures that
minimize or maximize one or multiple properties.

To explore the utility of our differentiable model for inverse
design, we use the hetero-GNN trained on SUNSET-1 with data aug-
mentation to search for Yb/Er/Nd-codoped UCNPs with the highest
UV/blueintensities under 800-nm excitation. To facilitate the discov-
ery of complex UCNP heterostructures, we conduct optimizations
far beyond the structural distribution spanned by our training data.
While the SUNSET-1 training set contains UCNP structures with up to
four regions (a core and three shells) and with a maximum radius of
11.5 nm, our optimizations explore UCNPs withup to tenregionsand a
maximum radius of 15 nm. Furthermore, during optimization we relax
the constraints on region thicknesses used to generate training data
(see ‘Optimization’ section in the Methods for more details).

Givenrandomly initialized nanoparticle structures, we use acom-
bination of trust region constrained local optimization*"*? and basin
hopping global optimization to identify UCNPs with maximized UV/
blue emission as a function of maximum allowed nanoparticle radius
and the number of distrinct regions in the heterostructure. The ‘Opti-
mization’ section in the Methods contains additional details of our
optimization approach. The maximumi intensities identified for UCNPs
of different sizes and different numbers of regions (core + shells) are
illustrated in Fig. 5a. The optimal structure for each distinct radius +
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Fig. 5| Gradient-based optimization of UCNP heterostructure. a, The
optimization matrixillustrates /,;,  intensity (cps) predictions for different
particle sizes and numbers of layers. Each square represents the total UV and
near-UV intensity obtained from validation (top left triangle) and predicted by
the ensemble of models (bottom right triangle). The orange outline encapsulates
UCNPs with maxiumum nanoparticle (NP) radii and number of regions within the
training distribution. Red boxes indicate optimized UCNPs that were selected for
visualization. See Supplementary Fig. 10 for an alternate color scheme provided
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for accessibility. b, Two-dimensional (2D) visualizations of four representative
optimized UCNPs from the optimization matrix. The brightest structure, UCNP
(iv), hasaUVintensity 6.5x brighter than the brightest UCNP in the SUNSET-1
training set. Er (orange), Nd (green), Yb (blue) and Y (white) are represented by
their respective colors in the 2D visualizations. Note: kMC simulations of the
optimized two-layer 15-nm particle were not possible due to the large number of
Er** dopants.

region number was then simulated with kMC, for which larger radius
particles often required months-long simulations. The colors of the two
trianglesineach squareindicate the kMC-simulated and ML-predicted
intensities for the optimized structure. Remarkably, the model dem-
onstrates accurate predictions for the upconversion luminescence
of particles with substantially OOD radii and numbers of regions,
including when the UV emissions approach an order of magnitude
higher than those in the training set. On the total set of optimized
UCNP structures (N = 80), the model achieves an MSE of 33.8, which is
slightly worse than the SUNSET-100D test set (22.1), butisimpressive
given the optimized UCNPs are far further OOD in terms of emission
intensity and heterostructure complexity.

Optimization results display several trends that are well estab-
lished inthe experimental literature on UCNP heterostructures. Opti-
mized UCNPs generally achieve higher absolute brightness at larger
diameters, presumably because they are able to host agreater number
of absorbing and emitting dopants*. The optimized heterostructures
for several representative sizes (Fig. 5b) show that the domains of these
champion UCNPs are in fact heavily doped—or rather, alloyed**, with
up to 100% lanthanide substitution—to maximize absorption and
emission throughput. Rather than spreading dopants homogeneously
through UCNPs, the brightest structures partition Erand Nd dopants
into separate shells, reflecting the established knowledge that Er and
Nd are prone to quench each other via cross-relaxation®. Because the
energy absorbed by Nd must be transferred to Er for upconversion,

the optimizer produced structures that separate Nd- and Er-rich
domains by a thin shell heavily doped with only Yb (ref. 6). Such lay-
ers transmit the energy absorbed by Nd dopants to the upconverting
Er dopants via rapid energy migration through the Yb sublattice. To
maximize Nd-Yb and Er-Yb ET, the Nd- and Er-containing shells are
also heavily doped with Yb. Many of the GNN-optimized structures,
particularly ones with fewer layers, are reminiscent of the three-layered
heterostructure refined by Zhong et al.® and others*. Nd-rich domains
are located in outer shells to maximize absorption by a larger num-
ber (volume) of the sensitizers. Meanwhile, an Er-rich core is used
to promote upconversion by concentrating absorbed energy into
asmaller volume and smaller number of Er activators. The fact that
gradient-based optimization of the hetero-GNN surrogate model can
rapidly learn design rules that have been developed over decades of
UCNP research suggests its potential to discover even more complex
and functional nanostructures.

In addition to validating established domain knowledge, the
extrapolated results from hetero-GNN optimization provide the
opportunity to understand the behavior of complex UCNPs with a
greater number of shells than can be readily synthesized or simulated.
For example, a major unanswered question is the optimal number of
layers for a UCNP; for instance, are more layers better? The optimiza-
tion matrix in Fig. 5a suggests that, for smaller particles (below 10 nm
radius), moving beyond two to three layers does not substantially
improve the brightness, probably because the shell thicknesses would
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be thinner than characteristic ET distances. However, larger UCNP
heterostructures (r >10 nm) do see benefit from complex many-shell
architectures, with the brightest 14- and 15-nm UCNPs having seven
and ten shells, respectively. These many-shelled structures also sug-
gest strategies to enhance upconversion efficiency. The most striking
characteristic of the optimized 12-,14- and 15-nm UCNPs (Fig. 5b(ii-iv))
istheir interleaving of multiple layers of Nd- and Er-rich shells. Rather
than converging on one large layer of Nd sensitizer, the optimized
12-nm UCNP sandwiches a layer of Nd sensitizer between two layers
of Er activator (with the appropriate Yb buffer layers, as in Fig. 5b(ii)),
while the brightest 15-nm UCNP exhibits the inverse arrangement
(Fig.5b(iv)). This sandwich shell arrangement allows ET to occur from
two sides, maximizing the number of donors oracceptorswithinagiven
distance while minimizing concentration quenching in those outer
shells. Curiously, the 14- and 15-nm-radius UCNPs also exhibit motifs
in which two Nd-rich shells are separated by an intermediate shell of
less concentrated Nd. It is unclear what advantage this motif provides.
It is possible that UCNPs may be relatively insensitive to variations
near their core (where this motif is observed) because the fraction of
dopants is relatively small compared with those in outer shells. This
argument may also explain the curious dearth of dopants in the core
ofthe15-nm UCNP. Microscopic analysis of the trajectories and energy
flows inside the corresponding kMC simulations®® can be used in the
future to elucidate the mechanistic origins of these structural motifs
(see Supplementary Fig. 11 for the mechanism extracted from the
simulation of the optimized four-layer, 10-nm UCNP heterostructure
shown in Fig. 5b(i)). Thus, while hetero-GNN models do not provide
direct physical insight, they can accelerate understanding by quickly
identifying optimized structures for deeper mechanistic investigation
with physical models.

Inaparticleutilizing all of the photophysical strategies observed
inFig.5b, wefinda 6.5xincreasein/,;_,, as compared with the bright-
est nanoparticle in the training set. Supplementary Video 1 visual-
izes alocal optimization trajectory (where many local optimizations
compose an overall global optimization) for a particle with eight total
regions, showing the modification of layer geometry and dopant con-
centrations as the emission intensity is being maximized. Even within
thetrainingfeature distribution, the optimizationidentifies a particle
that utilizes these design rules to achieve a 2x increase in emission
intensity as compared with the brightest particle in the training set.
These resultsillustrate that, both within the training distribution but
especially far OOD, optimization with a differentiable hetero-GNN
canrapidly discover structures with properties that exceed historical
training data and identify heterostructure design rules.

Ultimately, the optimized structuresin Fig. 5and their intriguing
structural design motifs must be validated and investigated more thor-
oughly through future experiments. The synthesis of the more com-
plex four- to ten-layered structures, while tedious, should be feasible
because the layer-by-layer synthesis of multishell UCNP heterostruc-
turesis well established***¢ and can be automated using precise robotic
workflows>*°. However, true comparisons of these synthesized struc-
tureswith model predictions will require future advancesinnanoscale
characterization (for example, atomic tomography), becauseimaging
tools such as transmission electron microscopy and electron energy
loss spectroscopy currently cannot resolve the small lanthanide ion
concentrations (as low as 0.1%) inside the thin shells (as small as1 nm)
ofthe optimized heterostructures, especially when buried within many
other shells and projected into a two-dimensional image.

Discussion

To assess the accuracy of our model prediction during optimization,
particularly in the far OOD region, we performed explicit kMC simu-
lations. For the largest particles, these simulations were extremely
expensive, and we terminated many simulations early (after 20-80% of
therequested kMC steps had run) to reduce cost. Overall, the validating

kMC simulations took >120,000 central processing unit (CPU)-hours
on AMD EPYC 7763 and Intel Xeon Gold 6330 CPUs, and individual
simulations could take dozens of weeks. All optimizations using our
trained hetero-GNN took approximately 2,000 graphics processing unit
(GPU)-hours on NVIDIA A100 GPUs. Because optimal particles often
emerged early during the optimization process, this GPU-hour figure
could probably be reduced by improving our optimization procedure.
Coupled with the fact that the kMC simulations could not be directly
used for gradient-based optimization, as they are not inherently dif-
ferentiable, this indicates the massive acceleration in nanomaterial
design that can be achieved using DL.

The models that we developed here were trained to predictasingle
property, namely emissionintensity. An alternative direction would be
todirectly learnthe UCNP photodynamics, training models to predict
the state of aUCNP systemata particular pointintime. Thisapproach,
inline with recent, related workin the area of neural network solutions
todifferential equations*’*%, could enable more facile and automated
mechanistic reasoning and is a worthy direction for future study.

While we have here focused on UCNPs, we believe that the het-
erogeneous graph representation that we have described and imple-
mented could be suitable to predict heterostructure-dependent
propertiesin other multilayered nanomaterials. Possible applications
include engineering the nanophotonic properties of plasmonic™°
and dielectric nanoparticles®, the catalytic properties of polyelemen-
tal heterostructures*’, the optoelectronic properties of complex
semiconductor nanoparticle heterostructures", the layer-by-layer
assembly of nanoparticles for drug delivery*®, multilayered magnetic
nanospheres'?and multilayer graphene sheets for diverse energy and
mechanical applications®. Our framework could be applied to such
materials by encoding the composition of the layers, dimensional
information and physical interactions as features in the nodes of
heterogeneous graphs. A hetero-GNN could be trained to output
desired properties such as scattering spectra. The application-specific
physics of these systems can be customized simply by substituting
the physics-informed features in the interaction nodes, highlight-
ing a major advantage of our heterogeneous graph approach. We
also note that, given a DL model that can predict multiple properties
controlled by heterostructure, our approach could enable structural
optimization while maximizing or minimizing multiple properties
simultaneously. Overall, our approach has the potential to consider-
ably improve the rate at which we discover functional nanomaterials
and could provide inspiration for applications of DLto underexplored
areas of chemistry and nanoscience.

Methods

Simulation

We use the high-performance C++ kMC implementation in the
RNMC software package® to simulate the optical response of
lanthanide-doped nanoparticles. Input generationis handled by Nano-
ParticleTools. The effects of parasitic surface ligands are incorporated
by including dopant species that are acceptors, which effectively act
asenergy sinks.

OurkMC method uses the Gillespie rejection-free kKMC approach™
without additional optimization for efficiency. As such, we observe a
large fraction of computation consumed by rapid fluctuations between
configurations connected by resonant ET between nearby ions or by
thermal equilibration between nearby energy levels®. Simulation
efficiency could be increased through established solutions to this
‘low barrier problem’ of temporally stiff kMC simulations, including
by addressing nearby energy levels and ions as a single entity* or by
reducing rate constants for the most rapid fluctuations®*. Such meth-
ods must be adapted and validated for the complex interactions of
UCNP photophysics. Beyond kMC, there are alternative methods to
simulate the photophysics of upconversion, including solving systems
of differential rate equations (DREs) across spatially discretized UCNP
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heterostructures®. While a comparison between these methods is
outside the scope of our current work, they suggest that it may be pos-
sible to study UCNPs as we have here without relying on kMC. Although
the complexity of ET networks in complex UCNP heterostructures
negates many of the advantages of DREs, recent developments using
neural network solutions to differential equations could accelerate
such DRE-based approaches.

Workflow and Infrastructure

To scale UCNP simulations from single, hand-tailored calculations to
high-throughput simulations on the scale of tens of thousands, we built
anautomated workflow to orchestrate the simulations. The workflow
isimplemented in Python, utilizing JobFlow and FireWorks®**’.

To begin the process, we randomly generate a large set of nano-
particle structures using code from NanoParticleTools. A ‘firework’
(calculation unit) is created for each candidate nanoparticle structure
and inserted into a MongoDB collection (Supplementary Fig. 1). For
maximum throughput, we execute simulations with multiple tiers of
concurrency, including across various supercomputers, multiple jobs
per system and multiple workers per job. Each worker runs simula-
tions for a single nanoparticle heterostructure, corresponding to four
individual simulations with different seeds for the random number
generator in event sampling.

When aresource is provisioned and a worker is activated, it que-
ries ajob specification from the MongoDB database. If the simulation
is new, the input files are generated, and the directory and machine
informationarerecordedinthe database. If the jobis a continuation of
anexisting run, the worker navigates to the previously logged directory.
We note that resumed simulations are allocated only to workers on the
same machine as theinitial run, as supercomputers often do not have
directaccesstoeachother’sfile systems. Simulations are executed until
completionor untilthe resource allocationis revoked. SLURM (Simple
Linux Utility for Resource Management) jobs are configured to send
a signal to the worker 2 min before termination, allowing the worker
to save the current state and checkpoint the job. Once a simulation is
completed, the trajectory is analyzed, and asummary of the results is
writtentothe database. The worker thenrepeatsthe cycle of querying
ajobdefinition,and so on. This automated checkpointing functionality
allowed us to use low-priority preemptible queues for the majority of
SUNSET data generation.

SUNSET dataset

We present the dataset titled SUNSET. SUNSET consists of five sub-
datasets thatencompass arange of nanoparticles. Evolution of the ET
network viakMCis carried out to 10 ms.

Within each subdataset, we provide a training (and validation)
split, an ID test split and an OOD test split. In SUNSET-2, SUNSET-3
and SUNSET-4, the OOD test split also contains the particles with
the top 5% and bottom 5% of core sizes. In the case of SUNSET-2 and
SUNSET-3, where many of the structures are obtained from Bayesian
optimization’, we also partition the highest-emitting particles into
the OOD test splits. We set these particles aside to ensure the model
performance, and therefore the optimization is not biased by these
preoptimized configurations. SUNSET-1comprises awider parameter
space andis sampledinanunbiased manner; thus, we do not follow the
same splitting scheme. Instead, we use the four-shell nanoparticles as
the OOD, rather than splitting based on emissions.

« SUNSET-1targets the Er-Nd-Yb system, commonly used to
achieve upconversion with 800-nm light®*. It is composed of
multilayered UCNPs with a core and up to four shells, illustrated
in Fig. 2b. Each nanoparticle consists of a doped core with vari-
able radius r,. ranging from1to 4 nm and doped shells with
variable thickness r,, ranging between 1 nm and 2.5 nm. The
total UCNP size ranges between1nm to 13.6 nm.

« SUNSET-2 targets the Yb-Er system, a pair that is known to
absorb at 980 nm and emit UV light. It is composed of core-
shell UCNPs characterized by a total radius of 4 nm. Each UCNP
consists of a doped core with variable radii, r.,,., ranging from O
to 3.4 nm, enclosed within a fixed outer shell radius of 3.4 nm. In
addition, the UCNP features a cap shell containing surface spe-
cies, which mimic the parasitic nature of surface ligands in real
UCNP systems. The total UCNP size remains constant at 4 nm.
Notably, certain particles lack a shell when r,,,.= 0 or 3.4 nm.
SUNSET-3 also focuses on the Yb-Er system but excludes the
presence of surface species. Removing parasitic surface ligands
mirrors the effect of growing an inert external shell of undoped
NaYF, over the synthesized UCNP. With the external shell
excluded, the UCNP size is limited to 3.4 nm. Parameters, includ-
ing the core and shell sizes, dopants and incident wavelength,
remain identical to SUNSET-2.

SUNSET-4 expands on SUNSET-2 by introducing Tm as a possible
dopant. Like Er, Tm can also facilitate UV emission. All other
parameters in SUNSET-4 remain identical to SUNSET-2. This
dataset is intended to be used in conjunction with SUNSET-2.

Averaging kMC trajectories

Due to the stochastic nature of kMC simulations, where slight differ-
ences in sampling lead to drastically different trajectories, even with
the same starting conditions, we average across multiple replicate
trajectorieswhenreporting photophysical properties. Specifically, the
simulations are influenced by the dopant placement on the NaYF, host
and the pseudorandom number generator used for event sampling. In
thereported datasets, we generate four uniquely doped nanoparticles
and simulate each with four different sampling seeds, for a total of 16
replicates. Insome cases where simulations are very costly and run for
weeks, such as in large or heavily doped nanoparticles, we use fewer
dopant configurations resulting in averages of 4, 8 or 12 replicates. This
isthe case for -6% of the reported data.

To examine the effect of the simulation averaging, we examine
the mean statistics using Delete-d jackknife®®, treating the average of
16 replicatesasthetruevalue. Theerrorintroduced by averaging 4-12
trajectories is between 60 cps and 140 cps (Supplementary Fig. 2).
While this may be orders of magnitude for low-emitting particles, for
thetarget high-emitting particles, thisisanerror of <1%. We find train-
ing with more data, by inclusion of the lower fidelity points, outweighs
the negatives of less accurate data. The lower fidelity points probably
include a higher proportion of more heavily doped particles, which
are more likely to run into limitations with runtime, and thus their
inclusionintraining isimportant for dataset diversity and to avoid an
unintentional biasing against heavily doped particles.

Aggregation and data transformation

The outputand modeltarget, /,;,_,v, aggregated across the wavelength
range of 300-450 nm (equation (1)), presents two major challenges.
First, the summed intensities exhibit abroad range spanning multiple
orders of magnitude. Regression using metrics such as mean absolute
error or MSE may emphasize fitting higher-magnitude values, leading
to neural network parameters becoming biased to more accurately
predict these large values. Second, the intensities follow an exponential
distribution, posing challenges for ML models that might prioritize
learning patterns in the majority class (lower emissions) and struggle
to generalize to the minority class (higher emissions).

450

lis—uv = Z 1. 0}

A=300

To address these challenges, a logarithmic transformation is
applied to compress the labels into a more manageable range (Equation
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(2)). To prevent undefined values, a constant is added before the log
transform for nanoparticles with no emissions. Inaddition to avoiding
undefined values, this constantimpacts the spacing of low-valued data.
To ensure no gap in the label distribution, this constant is set to 100,
considering that the lowest nonzero value in the dataset is 25 cps based
on an average of aminimum of four 10-ms simulations.

target = log,,(/yis_uv + 100). 2)

Integrated interaction

The integrated interaction is derived by integrating a Gaussian func-
tion, denoted as ¥ (s; 0, 0), over all pairwise distances, s, betweeninter-
actingregions, V;and V, asillustrated in Fig. 3b:

Il=x,-><xj/fJV(S;O,a)dVide, 3)

S(rh 611 ¢1, r, 02’ ¢2)
@)

= \/rf + rg — 211, (sin(6;) sin(8,) cos(¢; — ) + cos(6;) cos(65)),

wherex;and x;are the doping concentrationsinregionsiandj, respec-
tively, oare the neural network parameters, and sis writtenin spherical
coordinates. While the probability of ET between two dopantsis actu-
ally proportional to distance™, we chose to represent this probability
as a sum of Gaussian functions because they are continuous at x=0
and can be integrated multiple times while still capturing the decay-
ing nature of ET with increasing distance between twoions. Adjusting
the o parameters within the Gaussians enables the modulation of the
effective interaction distance of dopants. When used in the ML model,
the integrated interaction module is parameterized by n learnable
weights (here n=5), each corresponding to a ¢ value of one of the
Gaussiansin the sum.

Data augmentation for learning subdivision invariance

While the hetero-GNN exhibits superior performance to the CNN, the
image (CNN) representation has the physically intuitive property that
arbitrarily subdividing a given nanoparticle region (for example, divid-
ing a shell into two smaller shells, where both have the same dopant
concentrations as the originally undivided region) has no impact on
the model’s structural representation or subsequent label predic-
tion. This property, which we call subdivisioninvariance, is physically
motivated by the fact that region subdivision is arbitrary and leaves
the nanoparticle being described completely unchanged. However,
neither our heterogeneous graph nor any of the other nonimage repre-
sentations areinherently subdivisioninvariant. For example, as shown
in Fig. 4a, subdividing an originally core-only particle into a core and
a shell dramatically changes the heterogeneous graph, and thus our
hetero-GNN model may predict very different latent representations
for physically identical nanoparticles. This is clearly undesirable and
may be detrimental toboth the learning process and subsequent struc-
tural optimization. Meanwhile, the voxelization that makes the image
representation subdivision invariant simultaneously causes layer
dimensions to only be presentin the modelimplicitly, preventing UCNP
emission from being differentiated with respect to layer thicknesses
and precluding gradient-based optimization of UCNP heterostructure.
Thus, any DL model that aims to enable inverse design of nanomaterial
heterostructure via gradient-based optimization will need to reckon
with the problem of subdivision invariance.

Even when an input representation is not inherently subdivision
invariant, itis possible to design the DL model built atop the represen-
tation to explicitly enforce subdivision invariance such that physically
identical structures yield identical latent representations. However,
inthe context of agraph representation, such explicit enforcement is

only possible by avoiding the use of any nonlinear operations, which
dramatically limits model expressivity and performance.

An alternate strategy is to train models to approximate subdivi-
sion invariance via data augmentation. Using data augmentation to
train approximate invariances in different DL contexts (for example,
image rotation, reflection in CNNs*, molecular rotation and transla-
tion in interatomic potentials®®) is well established and can enhance
model prediction accuracy and robustness. We apply this augmen-
tation strategy to our hetero-GNN model by artificially subdividing
the UCNP input with the same labels (emission intensities) but with
structural representations modified with random subdivisions. More
specifically, for each UCNPinput, we randomly subdivide each parent
layerintouptothree child layersin the augmented UCNP. The subdivi-
sionisinserted between 5% and 90% of the parent layer radii. This data
augmentation is meant to guide the learned latent representation to
exhibit approximate subdivision invariance, which should improve
model performance. This strategy isimplemented on-the-fly (Fig. 4b),
sothat datain each batch are augmented as they appear during train-
ing, rather than augmenting the entire dataset before training. Thus,
this does not explicitly increase the size of the training dataset, but
implicitly multiplies the number of unique heterograph representa-
tions of UCNPs seen by the model during training by the number of
training epochs. Random subdivisions result in a node with 7,,;, Foucer
being split into two nodes With riyner Fsubdivision AN Feubdivisions Fouterr WheETE
< T'subdivision < router'

When the hetero-GNN is trained using on-the-fly-augmentation, its
performanceimproves by 23% onthe D test set (witherror falling from
13.8t010.6) and by 25% on the OOD test set (with error falling from 22.1
(2.3%)t016.5(1.7%)). In addition, we validated that this augmentation
scheme actually trains the model to learn subdivision invariance by
evaluating the vector distance between the representation of nano-
particles and their subdivided analogs, observing that the augmented
hetero-GNN model more closely represented the subdivided UCNPs in
theID and OOD test sets inembedding space than the nonaugmented
model across a range of subdivisions (Supplementary Fig. 6). These
results underscore the importance of considering subdivision invari-
ance inmodel training.

rinner

Model training

Alearningrate of 1 x 10 is used, withawarm-up period of tenepochs,
wherethelearning ratelinearly increases from1x10*to1x 107, During
training, the MSE of the validation set is monitored and the learning rate
is reduced on plateau, with a patience of 50 epochs. Early stopping is
triggered when the validation MSE has not decreased for 200 epochs.
Model performance is reported using the MSE and normalized MSE
(NMSE), as shown in equations (5) and (6) below:

12 . 2
MSE = N Z (IOglo(Ivis—U\/ + 100) - lOgl()(lvis—UV + 100)) (5)
i=1

~ 2
S, (0go(his"wy +100) — log,o (lis_yy +100))

NMSE = n -
Z,‘:l 10g10(lvis—UV + 100)

. (6

where N is the number of UCNPs, /"y is the predicted UV emission
intensity and /,;,_,y is the actual emission intensity.

Optimization
For a nanoparticle with / control volumes and z dopant elements, we

can define the following bounds.

0<xi <1, foriel0..llandn € [0..z] @)

0 <rfc <1, forie[0..1], 8)
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where the outer radius of one control volume is explicitly the inner
radius of the subsequent control volume. All dopant concentrations
are within the closed interval [0, 1]. The fractional radius of region i,
ric, is defined on an interval of [0, 1] as a fraction of the maximum
nanoparticlesize, r,,,, (whichweidentify a priori). Thisisnecessary to
keep onthesameintervalasthe concentration, because the trustregion
optimizer defines the same trust region for all independent
variables r™ = r;/ry,y

In addition, we define linear constraints that bound the total
concentration within each region [0, 1] and restrict the thickness of
eachregion.

zZXn+z
0< > x;<1, fornel0.l-1] 9)

Jj=zxn

Cmin £ 70 < Cmax (10)

bnin < Tpy1—Tp < maxs forn e [O~ z- 1], (ll)

wherejis a dopant-regionindex, the minimum coreradius ¢, =1 nm,
the maximum core radius c,,,, = 5 nm, the minimum layer thickness
tmin= 0.5 nmand the maximum layer thickness ¢, = 5 nm. Weinitialize
random starting configuration within the distributions outlined for
each dataset as a starting point for optimization. We perform local
optimization using the trust region constrained optimizationasimple-
mented in SciPy* withaninitial trust radius of 1.0. Aninitial constraint
penalty of 1 x 10®was applied to strongly penalize constraint violation,
ensuring that concentrations stayed within the range of [0, 1.0] and
total radius within specification. The criterion used for termination of
local optimization is when the trustradius is less than1x 1078, To search
foraglobally optimal particle, we repeatedly perturb the local minima
andreoptimize the nanoparticle heterostructure using the basinhop-
ping functionality of SciPy with up to 500 steps, a step size of 0.15 and
atemperature value of 0.25. Following global optimization, the best
identified candidate structures are validated viakMC simulations. For
thelarger particlesin the optimization matrix, these kMC simulations
often took months torun.

Data availability

The SUNSET dataset is freely available via Figshare at https://doi.
org/10.6084/m9.figshare.25130921 (ref. 61). Each subset (for instance,
SUNSET-1) is presented in Javascript Object Notation (JSON) format;
separate JSON files are also provided for ID and OOD collections
for each subset. The hetero-GNN models used for UCNP optimiza-
tion are freely available via Figshare at https://doi.org/10.6084/
mo.figshare.27941694.v1 (ref. 62). The nanoparticle structures dis-
covered by optimizing the hetero-GNN model are available via Figshare
at https://doi.org/10.6084/m9.figshare.27973206 (ref. 63). Data for
Figs.2 and 5 are available via Figshare at https://doi.org/10.6084/
m9.figshare.29916992 (ref. 64).

Code availability

The RNMC program, which contains the NPMC kMC tool, is available
via GitHub at https://github.com/BlauGroup/RNMC and via Zenodo
at https://doi.org/10.5281/zenod0.14360064 (ref. 65). Code defining
the ML representations, datafeaturization and model training is avail-
able via GitHub at https://github.com/BlauGroup/NanoParticleTools
and via Zenodo at https://doi.org/10.5281/zenod0.16878169 (ref. 66).

References

1. Voznyy, O., Sutherland, B.R., Ip, A. H., Zhitomirsky, D. & Sargent,
E. H. Engineering charge transport by heterostructuring
solution-processed semiconductors. Nat. Rev. Mater. 2, 17026
(2017).

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Sun, W. et al. Machine learning-assisted molecular design and
efficiency prediction for high-performance organic photovoltaic
materials. Sci. Adv. 5, 4275 (2019).

Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular
design using machine learning: generative models for matter
engineering. Science 361, 360-365 (2018).

Wu, S. et al. Machine-learning-assisted discovery of polymers
with high thermal conductivity using a molecular design
algorithm. npj Comput. Mater. 5, 66 (2019).

Skripka, A. et al. A generalized approach to photon avalanche
upconversion in luminescent nanocrystals. Nano Lett. 23,
7100-7106 (2023).

Zhong, Y. et al. Elimination of photon quenching by a transition
layer to fabricate a quenching-shield sandwich structure for
800 nm excited upconversion luminescence of Nd**-sensitized
nanoparticles. Adv. Mater. 26, 2831-2837 (2014).

So, S., Mun, J. & Rho, J. Simultaneous inverse design of materials
and structures via deep learning: demonstration of dipole
resonance engineering using core-shell nanoparticles. ACS Appl.
Mater. Interfaces 11, 24264-24268 (2019).

Peurifoy, J. et al. Nanophotonic particle simulation and inverse
design using artificial neural networks. Sci. Adv. 4, 4206 (2018).
Xia, X., Sivonxay, E., Helms, B. A., Blau, S. M. & Chan, E. M.
Accelerating the design of multishell upconverting nanoparticles
through Bayesian optimization. Nano Lett. 23, 11129-11136 (2023).
Liu, G.-X. et al. Inverse design in quantum nanophotonics:
combining local-density-of-states and deep learning.
Nanophotonics 12, 1943-1955 (2023).

Hamachi, L. S. et al. Precursor reaction kinetics control
compositional grading and size of cdsel-xsx nanocrystal
heterostructures. Chem. Sci. 10, 6539-6552 (2019).

Albrecht, M. et al. Magnetic multilayers on nanospheres. Nat.
Mater. 4, 203-206 (2005).

Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like
two-dimensional materials. Chem. Rev. 113, 3766-3798 (2013).
Chen, Y. et al. Two-dimensional metal nanomaterials: synthesis,
properties, and applications. Chem. Rev. 118, 6409-6455 (2018).
Xie, C., Niu, Z., Kim, D., Li, M. & Yang, P. Surface and interface
control in nanoparticle catalysis. Chem. Rev. 120, 1184-1249
(2019).

Haghighatlari, M. et al. Learning to make chemical predictions:
the interplay of feature representation, data, and machine
learning methods. Chem 6, 1527-1542 (2020).

Krenn, M., Hase, F., Nigam, A., Friederich, P. & Aspuru-Guzik, A.
Self-referencing embedded strings (SELFIES): a 100% robust
molecular string representation. Mach. Learn. Sci. Technol. 1,
045024 (2020).

Weininger, D. SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules. J.
Chem. Inf. Comput. Sci. 28, 31-36 (1988).

O’Brien, M. N., Jones, M. R. & Mirkin, C. A. The nature and
implications of uniformity in the hierarchical organization of
nanomaterials. Proc. Natl Acad. Sci. USA 113, 11717-11725 (2016).
Liang, R. et al. Hierarchically engineered nanostructures from
compositionally anisotropic molecular building blocks. Nat.
Mater. 21, 1434-1440 (2022).

Brown, K. A., Brittman, S., Maccaferri, N., Jariwala, D. & Celano, U.
Machine learning in nanoscience: big data at small scales. Nano
Lett. 20, 2-10 (2019).

Zhou, J. et al. 2Dmatpedia, an open computational database

of two-dimensional materials from top-down and bottom-up
approaches. Sci. Data 6, 86 (2019).

Reker, D. et al. Computationally guided high-throughput design
of self-assembling drug nanoparticles. Nat. Nanotechnol. 16,
725-733 (2021).

Nature Computational Science


http://www.nature.com/natcomputsci
https://doi.org/10.6084/m9.figshare.25130921
https://doi.org/10.6084/m9.figshare.25130921
https://doi.org/10.6084/m9.figshare.27941694.v1
https://doi.org/10.6084/m9.figshare.27941694.v1
https://doi.org/10.6084/m9.figshare.27973206
https://doi.org/10.6084/m9.figshare.29916992
https://doi.org/10.6084/m9.figshare.29916992
https://github.com/BlauGroup/RNMC
https://doi.org/10.5281/zenodo.14360064
https://github.com/BlauGroup/NanoParticleTools
https://doi.org/10.5281/zenodo.16878169

Article

https://doi.org/10.1038/s43588-025-00917-3

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

McCandler, C. A., Dahl, J. C. & Persson, K. A. Phosphine-stabilized
hidden ground states in gold clusters investigated via a
Au,(PH;)m database. ACS Nano 17, 1012-1021 (2022).

Barnard, A. et al. Nanoinformatics, and the big challenges for the
science of small things. Nanoscale 11, 19190-19201 (2019).
Hlavacek, A. et al. Bioconjugates of photon-upconversion
nanoparticles for cancer biomarker detection and imaging. Nat.
Protoc. 17, 1028-1072 (2022).

Pan, J.-A., Qi, X. & Chan, E. M. Enhanced upconversion and
photoconductive nanocomposites of lanthanide-doped
nanoparticles functionalized with low-vibrational-energy
inorganic ligands. Nanoscale Horiz. 10, 596-604 (2025).
Sanders, S. N. et al. Triplet fusion upconversion nanocapsules for
volumetric 3d printing. Nature 604, 474-478 (2022).

He, M. et al. Monodisperse dual-functional upconversion
nanoparticles enabled near-infrared organolead halide perovskite
solar cells. Angew. Chem. Int. Ed. 55, 4280-4284 (2016).
Teitelboim, A. et al. Energy transfer networks within upconverting
nanoparticles are complex systems with collective, robust, and
history-dependent dynamics. J. Phys. Chem. C 123, 2678-2689
(2019).

Zichi, L. et al. RNMC: kinetic Monte Carlo implementations for
complex reaction networks. J. Open Source Softw. 9, 7244 (2024).
Xu, X. et al. Optimising passivation shell thickness of single
upconversion nanoparticles using a time-resolved spectrometer.
APL Photonics 4, 026104 (2019).

Wu, X. et al. Dye-sensitized core/active shell upconversion
nanoparticles for optogenetics and bioimaging applications. ACS
Nano 10, 1060-1066 (2016).

Corso, G., Stark, H., Jegelka, S., Jaakkola, T. & Barzilay, R. Graph
neural networks. Nature Rev. Methods Primers 4,17 (2024).

Shi, R. & Mudring, A.-V. Phonon-mediated nonradiative relaxation
in In**-doped luminescent nanocrystals. ACS Mater. Lett. 4,
1882-1903 (2022).

Perez, E., Strub, F., De Vries, H., Dumoulin, V. & Courville, A. Film:
visual reasoning with a general conditioning layer. Proc. AAAI
Conf. Artif. Intell. 32, 39412-3951(2018).

Brody, S., Alon, U. & Yahav, E. How attentive are graph attention
networks. In International Conference on Learning Representations
(ICLR, 2022).

Chan, E. M., Levy, E. S. & Cohen, B. E. Rationally designed energy
transfer in upconverting nanoparticles. Adv. Mater. 27, 5753-5761
(2015).

Skripka, A. & Chan, E.M. Unraveling the myths and mysteries

of photon avalanching nanoparticles. Mater. Horiz. https://doi.
org/10.1039/D4MHO1798F (2025).

Chan, E. M. Combinatorial approaches for developing
upconverting nanomaterials: high-throughput screening,
modeling, and applications. Chem. Soc. Rev. 44, 1653-1679
(2015).

Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261-272 (2020).

Conn, A.R., Gould, N. I. & Toint, P. L. Trust Region Methods (SIAM,
2000).

Gargas, D. J. et al. Engineering bright sub-10-nm upconverting
nanocrystals for single-molecule imaging. Nat. Nanotechnol. 9,
300-305 (2014).

Tian, B. et al. Low irradiance multiphoton imaging with alloyed
lanthanide nanocrystals. Nat. Commun. 9, 3082 (2018).

Xie, X. et al. Mechanistic investigation of photon upconversion in
Nd*-sensitized core-shell nanoparticles. J. Am. Chem. Soc. 135,
12608-12611 (2013).

Li, X., Wang, R., Zhang, F. & Zhao, D. Engineering homogeneous
doping in single nanoparticle to enhance upconversion
efficiency. Nano Lett. 14, 3634-3639 (2014).

47. Du, Y., Chalapathi, N. & Krishnapriyan, A. Neural spectral methods:
self-supervised learning in the spectral domain. In Proc. Twelfth
International Conference on Learning Representations (2024).

48. Chalapathi, N., Du, Y. & Krishnapriyan, A. Scaling
physics-informed hard constraints with mixture-of-experts.

In Proc. Twelfth International Conference on Learning
Representations (2024).

49, Wahl, C. B. et al. Machine learning-accelerated design and synthesis
of polyelemental heterostructures. Sci. Adv. 7, 5505 (2021).

50. Yan, Y., Such, G. K., Johnston, A. P., Lomas, H. & Caruso, F. Toward
therapeutic delivery with layer-by-layer engineered particles. ACS
Nano 5, 4252-4257 (2011).

51. Lee, J.-H., Loya, P.E., Lou, J. & Thomas, E. L. Dynamic mechanical
behavior of multilayer graphene via supersonic projectile
penetration. Science 346, 1092-1096 (2014).

52. Gillespie, D. T. A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions.

J. Comput. Phys. 22, 403-434 (1976).

53. Andersen, M., Panosetti, C. & Reuter, K. A practical guide to
surface kinetic monte carlo simulations. Front. Chem.
https://doi.org/10.3389/fchem.2019.00202 (2019)

54. Chatterjee, A. & Voter, A. F. Accurate acceleration of kinetic
monte carlo simulations through the modification of rate
constants. J. Chem. Phys. 132, 194101 (2010).

55. Pini, F. et al. Spatial and temporal resolution of luminescence
quenching in small upconversion nanocrystals. ACS Appl. Mater.
Interfaces 14, 11883-11894 (2022).

56. Jain, A. et al. Fireworks: a dynamic workflow system designed for
high-throughput applications. Concurr. Comput. Pract. Exp. 27,
5037-5059 (2015).

57. Rosen, A. S. et al. Jobflow: computational workflows made
simple. J. Open Source Softw. 9, 5995 (2024).

58. Wu, C.-F. J. Jackknife, bootstrap and other resampling methods in
regression analysis. Ann. Stat. 14, 1261-1295 (1986).

59. Shorten, C. & Khoshgoftaar, T. M. A survey on image data
augmentation for deep learning. J. Big Data 6, 1-48 (2019).

60. Batzner, S. et al. E (3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nat. Commun.
13, 2453 (2022).

61. Sivonxay, E., Attia, L., Chan, E. M. & Blau, S. M. SUNSET Dataset
(For ‘Gradient-based optimization of complex nanoparticle
heterostructures enabled by deep learning on heterogeneous
graphs’). Version v1. Figshare https://doi.org/10.6084/
m9.figshare.25130921.v1(2025).

62. Attia, L. Hetero-GNN checkpoints. Version v1. Figshare
https://doi.org/10.6084/m9.figshare.27941694.v1 (2024).

63. Attia, L. Optimized nanoparticle structures. Version v1. Figshare
https://doi.org/10.6084/m9.figshare.27973206.v1 (2024).

64. Sivonxay, E., Attia, L., Blau, S. & Chan, E. M. Source data
(For ‘Gradient-based optimization of complex nanoparticle
heterostructures enabled by deep learning on heterogeneous
graphs’). Version v1. Figshare https://doi.org/10.6084/
m9.figshare.29916992.v1 (2025).

65. Zichi, L. et al. RNMC: kinetic Monte Carlo implementations for
complex reaction networks. Version v1.1.1. Zenodo https://doi.
0rg/10.5281/zenodo.14360064 (2024).

66. Sivonxay, E., Attia, L., Barter, D., Xia, X. & Blau, S. M. BlauGroup/
NanoParticleTools. Version Publication. Zenodo https://doi.
org/10.5281/zenod0.16878169 (2025).

Acknowledgements

This work was primarily funded by the Charter Hill Laboratory Directed
Research and Development program of Lawrence Berkeley National
Laboratory (LBNL), supported by the Office of Science, Office of

Basic Energy Sciences (BES), of the US Department of Energy (DOE)

Nature Computational Science


http://www.nature.com/natcomputsci
https://doi.org/10.1039/D4MH01798F
https://doi.org/10.1039/D4MH01798F
https://doi.org/10.3389/fchem.2019.00202
https://doi.org/10.3389/fchem.2019.00202
https://doi.org/10.6084/m9.figshare.25130921.v1
https://doi.org/10.6084/m9.figshare.25130921.v1
https://doi.org/10.6084/m9.figshare.27941694.v1
https://doi.org/10.6084/m9.figshare.27941694.v1
https://doi.org/10.6084/m9.figshare.27973206.v1
https://doi.org/10.6084/m9.figshare.29916992.v1
https://doi.org/10.6084/m9.figshare.29916992.v1
https://doi.org/10.5281/zenodo.14360064
https://doi.org/10.5281/zenodo.14360064
https://doi.org/10.5281/zenodo.16878169
https://doi.org/10.5281/zenodo.16878169

Article

https://doi.org/10.1038/s43588-025-00917-3

under contract no. DE-AC02-05CH11231. This DOE-BES contract also
supported work at the Molecular Foundry as well as computational
resources at the National Energy Research Scientific Computing
Center (NERSC, award no. BES-ERCAP0023292) and the Lawrencium
computational cluster provided by the LBNL IT Division. We are
especially grateful for the NERSC and Lawrencium low-priority
queues, without which this work would not have been possible.

L.A. was supported by the DOE Computational Science Graduate
Fellowship under award no. DE-SC0022158. E.W.C.S.-S. was supported
by the Carnegie Bosch Institute Postdoctoral Fellowship. We thank K.
Chiao for helpful discussions related to optimizing C++ code.

Author contributions

E.S. and D.B. implemented nanoparticle kMC in C++, and X.X.
provided validation against a previous implementation. E.S. and X.X.
built simulation analysis capabilities in Python. E.S. implemented

the high-throughput workflow infrastructure. E.S. and X.X. ran kMC
simulations to construct SUNSET. E.S. implemented RFR, FCNN, CNN
and homo-GNN models and trained on SUNSET data. E.S. and L.A.
implemented the hetero-GNN model and trained on SUNSET data.
L.A. and E.S. implemented the on-the-fly data augmentation scheme.
E.S. implemented and carried out global optimization, and then ran

kMC on the optimized particles to validate predicted intensities. B.S.-L.

provided important input on components of the GNN architecture and
global optimization. E.S., L.A., EW.C.S.-S., E.M.C. and S.M.B. wrote the
manuscript. E.M.C. and S.M.B. conceived and supervised the project.

Competinginterests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s43588-025-00917-3.

Correspondence and requests for materials should be addressed to
Emory M. Chan or Samuel M. Blau.

Peer review information Nature Computational Science thanks Kuan
Sun and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. Primary Handling Editor: Katilin McCardle,

in collaboration with the Nature Computational Science team. Peer
reviewer reports are available.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and institutional
affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America,
Inc. 2025

Nature Computational Science


http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-025-00917-3
http://www.nature.com/reprints

	Gradient-based optimization of complex nanoparticle heterostructures enabled by deep learning on heterogeneous graphs

	Results

	Dataset construction

	Representing nanoparticle structure for ML

	Model performance

	Nanoparticle optimization


	Discussion

	Methods

	Simulation

	Workflow and Infrastructure

	SUNSET dataset

	Averaging kMC trajectories

	Aggregation and data transformation

	Integrated interaction

	Data augmentation for learning subdivision invariance

	Model training

	Optimization


	Acknowledgements

	Fig. 1 DL approach to enable UCNP heterostructure optimization.
	Fig. 2 Description of SUNSET datasets.
	Fig. 3 UCNP graph representation and hetero-GNN model architecture.
	Fig. 4 Increasing hetero-GNN accuracy using on-the-fly data augmentation to promote subdivision invariance.
	Fig. 5 Gradient-based optimization of UCNP heterostructure.
	Table 1 Model performance on the SUNSET-1 dataset.




