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Gradient-based optimization of complex 
nanoparticle heterostructures enabled by 
deep learning on heterogeneous graphs
 

Eric Sivonxay1, Lucas Attia    1,2, Evan Walter Clark Spotte-Smith    3, 
Benjamin Sanchez-Lengeling4,6,7, Xiaojing Xia5, Daniel Barter1, 
Emory M. Chan    5   & Samuel M. Blau    1 

Applications of deep learning (DL) to design nanomaterials are hampered 
by a lack of suitable data representations and training data. Here we report 
efforts to overcome these limitations and leverage DL to optimize the 
nonlinear optical properties of core–shell upconverting nanoparticles 
(UCNPs). UCNPs, which have applications in fields such as biosensing, 
super-resolution microscopy and three-dimensional printing, can emit 
visible and ultraviolet light from near-infrared excitations. We report 
a large-scale dataset of UCNP emission spectra based on accurate 
but expensive kinetic Monte Carlo simulations (N > 6,000) and use 
these data to train a heterogeneous graph neural network using a 
physically motivated representation of UCNP nanostructure. Applying 
gradient-based optimization on the trained graph neural network, we 
identify structures with 6.5× higher predicted emission under 800-nm 
illumination than any UCNP in our training set. Our work reveals design 
principles for UCNP heterostructures and presents a roadmap for 
DL-based inverse design of nanomaterials.

Applications in clean energy, advanced manufacturing, biomedicine, 
photonics and microelectronics increasingly demand new materi-
als with complex structures and heterogeneous composition1. In 
principle, machine learning (ML) offers a strategy to accelerate 
the discovery of such materials, as it has emerged as a transforma-
tional tool for the design of small molecules, bulk inorganic crystals 
and even single-component nanomaterials2–4. Deep learning (DL) 
approaches are particularly well suited to model the behavior of 
systems with large numbers of parameters, but several obstacles 
hinder DL from being used to guide the discovery of the complex 
materials often needed for real-world applications, including nano-
structures and composites.

First, state-of-the-art approaches for representing materials often 
fail to capture the structural complexity of nanomaterials, such as 
multishell nanoparticles5–12 (Fig. 1a), in which nanostructure controls 
energy transport1 (Fig. 1b). Nanomaterials exhibit distinct and often 
superior properties compared with their bulk counterparts13–15; how-
ever, the large number of features required to adequately describe a 
nanoscale material (including surface ligands and the morphology, 
dimensions, composition and defects of each domain) make training 
on naive tabular representations computationally inefficient, in part 
because they neglect physical relationships between features16. While 
bulk crystals can be represented by their unit cell coordinates and small 
organic molecules by atomic coordinates, graphs or strings17 such as 
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be used to direct efficient searches3. Thus, DL-guided inverse design 
of complex nanomaterials would benefit from the development of 
large, relevant structure–property datasets, new methods to represent 
them across lengths scales and differentiable models that are accurate 
beyond their training distribution.

In this work, we develop a heterogeneous graph representation for 
nanomaterials with a variable number of spatial domains, each contain-
ing multiple components that can interact within the same domain and 
across interfaces. We demonstrate that graph neural networks (GNNs) 
built atop such representations can accurately predict properties of 
nanostructures that are far more complex than any contained in the 
training dataset. As a model system, we center our investigation on 
lanthanide-doped upconverting nanoparticle (UCNP) heterostruc-
tures (Fig. 1a), whose unique nonlinear optical properties have appli-
cations in biological and super-resolution imaging26, optogenetics, 
sensing, photonics27, three-dimensional printing28 and photovoltaics29. 
These applications leverage the ability of UCNPs to absorb multiple 
near-infrared (NIR) photons and convert them into higher energy radia-
tion, often visible and ultraviolet (UV) light. Such nonlinear processes 
are the result of complex networks of energy transfer (ET) interactions 
between different lanthanide ions (including, Yb3+, Er3+ and Nd3+, as in 
Fig. 1b). To promote advantageous ET interactions and inhibit those 
that quench emission, nearly all practical implementations of UCNPs 
use doped heterostructures in which a spherical core is surrounded 
by one to four concentric shells, with each domain having a distinct 

the Simplified Molecular Input Line Entry System (SMILES)18, such 
atomistic representations are impractical for complex nanomaterials 
because their critical features often span length scales of one to >106 
atoms and cannot necessarily be reduced to periodic subunits19,20. 
Recent DL approaches encode spatial information as pixels or voxels, 
but these fixed-resolution representations cannot efficiently capture 
the structural hierarchy of a wide range of nanomaterials, including 
those of different sizes.

Beyond the challenge of representing nanomaterials, it is also 
challenging to generate datasets sufficiently large to train DL models 
that can accurately predict the properties of heterogeneous, multi-
component nanostructures21. Although high-throughput experimental 
and computational approaches are growing in their availability and 
utility22–24, the synthesis and simulation of complex heterostructures 
is often time-consuming, limiting the scale of available datasets25 and 
constraining campaigns to the ‘small data’ regime where DL techniques 
often struggle. Modern DL models can also have difficulty extrapolat-
ing outside of the envelope of their training data, which is necessary 
for the discovery of novel materials with enhanced properties. Finally, 
the discovery of fundamentally new materials is complicated by the 
rough response surfaces of material properties with respect to their 
composition, necessitating tedious ‘needle-in-a-haystack’ searches 
across a parameter space. The prediction of materials with targeted 
properties would be substantially accelerated by surrogate models that 
are differentiable so that gradient-based optimization techniques can 
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Fig. 1 | DL approach to enable UCNP heterostructure optimization.  
a, Schematic of doping heterostructured UCNPs. b, Illustration of the 
importance of heterostructuring to physically separate dopants. In the core-only 
particle, all dopants interact to a high degree, leading to cross-relaxation and 
consequently low upconversion efficiency, while heterostructuring with Er 
(orange) and Nd (green) separated into different regions doped with Yb (blue) 
prevents cross-relaxation and facilitates UV emission. c, Two-dimensional 
visualization of a heterostructured UCNP with core and shell doping levels for 
Yb3+ (blue), Nd3+ (green) and Er3+ (orange) represented as colored slices in a 
concentric pie chart. White regions represent the remaining fraction of Y3+ ions in 

the NaYF4 host matrix that have not been substituted by dopant ions. d, To enable 
physics-informed DL for the inverse design of UCNPs, we first construct a large 
dataset of simulated UCNPs and their upconversion (UC) luminescence spectra 
using high-throughput kMC simulations. e, Then, we investigate different 
representations of heterostructured UCNPs and find the best performance with 
a heterogeneous graph representation in a GNN. f, The resulting trained model 
can predict the gradient of emission intensity with respect to each structural 
parameter, enabling inverse design via gradient-based optimization of UCNP 
heterostructure to maximize UV emission. n-D = n-dimensional.

http://www.nature.com/natcomputsci


Nature Computational Science

Article https://doi.org/10.1038/s43588-025-00917-3

combination and composition of lanthanide ions (Fig. 1c). Due to the 
large numbers of tunable structural and compositional parameters 
and the complex network of ET interactions between dopants, optimiz-
ing the intensity and wavelength for such complex heterostructures 
is extremely challenging30. Thus, multishell UCNP heterostructures 
present a stringent test for any new DL model and representation.

To train these DL models, we generated a dataset of Simulated 
Upconverting Nanoparticle Spectra for Emission Tuning (SUNSET), 
consisting of results from ~6,000 kinetic Monte Carlo (kMC) simula-
tions of nanoparticle photophysics (Fig. 1d). Models trained on SUNSET 
aim to predict photon emission within a specified wavelength band as a 
function of UCNP heterostructure. By training on simulations of UCNPs 
with up to three shells and evaluating on simulations with four shells, 
we can quantify the capacity for models to extrapolate to larger and 
more complex heterostructures. We find that our heterogeneous graph 
representation, informed by UCNP physics and geometry, allows DL 
models to achieve far higher prediction accuracy than tabular, image 
and homogeneous graph representations (Fig. 1e), especially when 
extrapolating beyond the training data. The differentiability of our 
heterogeneous GNN (hetero-GNN) also yields gradients of emission 
intensity with respect to layer thicknesses and dopant concentrations 
(Fig. 1e), which are not accessible from kMC. Our trained model thus 
facilitates inverse design of UCNP heterostructure via gradient-based 
optimization (Fig. 1f), identifying superior UCNPs with a range of sizes 
and up to ten shells. When excited at 980 or 800 nm, these optimized 

UCNP heterostructures exhibit exceptionally high emission between 
300 nm and 450 nm, a spectral range useful for inducing photochem-
istry for optogenetic, catalytic, therapeutic and three-dimensional 
printing applications. To validate these predictions, we perform 
additional kMC simulations, which indicate that our model possesses 
considerable ability to extrapolate far out of distribution and can 
suggest never-before-seen structures with accurate predictions of 
their emission intensity, further revealing valuable design principles. 
These findings demonstrate a path forward for the optimization and 
discovery of technologically useful UCNPs and offer inspiration for the 
development of DL representations and models that enable inverse 
design for a broad range of optical nanomaterials.

Results
Dataset construction
To develop and train DL models that can predict core–shell UCNP 
photophysics and ultimately enable inverse design of UCNPs with 
complex heterostructures that exhibit efficient UV and blue emission 
(300–450 nm), we generated SUNSET, a dataset of over 30,000 multi-
shell UCNP spectra calculated with a high-performance kMC simula-
tion package (RNMC)31 optimized for chemical reaction networks and 
UCNP photophysics9 (Fig. 2). SUNSET consists of four subcollections 
(SUNSET-[1, 2, 3, 4]) that include different dopant ion combinations 
and surface effects (Fig. 2a). While each of the subcollections provides 
utility for model development and testing, we focus exclusively on 
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Fig. 2 | Description of SUNSET datasets. a, Summary of the SUNSET datasets, 
including excitation wavelength (λ, nm), fixed versus variable nanoparticle size, 
dopants used, presence or absence of luminescence-quenching surface ligands, 
and scale in terms of number of data points. b, Top: graphical depiction of 
SUNSET-1 heterostructures and ID versus OOD split. The OOD test data contain 
206 4-shell nanoparticles. Bottom: statistical distributions of structural features 

in the SUNSET-1 dataset. From left to right, distributions show nanoparticle 
radius (R, nm), shell thickness (nm) with colored series for each region (first shell, 
blue; second shell, orange; third shell, green), dopant concentration (x) with 
colored series for each dopant type (Er, blue; Nd, orange; Yb, green) and log10 of 
the UV intensity.
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SUNSET-1 in our main narrative; discussion of the SUNSET-[2–4] col-
lections can be found in the Methods and Supplementary Information 
sections 8 and 12. We focus on SUNSET-1 because this subcollection 
includes nanoparticles with variable sizes and numbers of shells, 
which are essential for training models capable of extrapolating to 
more complex heterostructures and thereby facilitating impactful 
inverse design. Further, the nanoparticle structures in SUNSET-1 are 
substantially larger than in SUNSET-[2–4] (given that they contain 
multiple layers, and each layer must be at minimum 1 nm thick to be 
synthesizable32), and thus the vast majority of the computational cost of 
SUNSET went toward the ~6,000 simulations in SUNSET-1. We note that 
individual kMC trajectories often took weeks to complete, necessitating 
the use of high-throughput self-checkpointing workflows (Methods; 
Supplementary Fig. 1).

SUNSET-1 utilizes a dopant set of Er3+, Nd3+ and Yb3+ because this 
combination of dopants has been used to sensitize upconversion6 and 
optogenetic activity33 with 800-nm excitation, a wavelength that lies 
in the NIR-I biological imaging window. Segregation of these dopants 
into different shells of UCNP heterostructures has been shown to 
dramatically enhance emission6. In these systems, Nd is typically 
included to sensitize the absorption of the 800-nm excitation, Er to 
upconvert absorbed energy and emit UV or visible light, and Yb to act 
as a conduit to transfer energy between Nd and Er dopants that would 
otherwise quench each other via cross-relaxation ET. The nanoparticle 
heterostructures sampled in SUNSET-1 are variable, with core radii 
ranging from 1 to 4 nm and up to three shells, each measuring between 
1 nm and 2.5 nm in thickness, as depicted in Fig. 2b. We sample the core 
radius and shell thickness from uniform distributions. Dopant concen-
trations are also drawn from uniform distributions, with the constraint 
that their total sum must be less than 1. To probe the extrapolatory 
power of developed models, we simulate explicit four-shell nanopar-
ticles and hold them out of training data to use as an out-of-distribution 
(OOD) test set. Thus, SUNSET-1 as a whole has nanoparticle radii span-
ning from 1 to 13.6 nm, and the brightest particle has an intensity of 
~20,000 photon counts per second (cps). Ivis–UV most closely follows an 
exponential distribution, so we use the unitless log10(Ivis−UV)  as the 
target label for model training.

Representing nanoparticle structure for ML
To train ML models on the SUNSET data, we initially investigated several 
existing representations for encoding the compositional and dimen-
sional features of each UCNP. As we summarize in Table 1 and discuss in 
more detail in the ‘Model performance’ section, we found that standard 
ML models (for example, random forest regressors (RFRs) and con-
volutional neural networks (CNNs) utilizing tabular and image-based 
representations exhibited poor ability to extrapolate, with three- to 
tenfold lower accuracy during OOD testing than during in-distribution 
(ID) testing.

Seeking representations and models with greater ability to 
extrapolate to more complex nanostructures, we explored the use of 
graph-structured representations, which have recently gained promi-
nence due to their ability to effectively capture complex relationships 
(edges) between entities (nodes)34. The simplest graph representation 
of a UCNP is a homogeneous graph in which each node is labeled with 

the identity and concentrations of a single type of dopant (for instance, 
Er) in a specific domain of the UCNP (for instance, the core), while edges 
encode interactions (ET processes) between dopants represented by 
those nodes. However, we found that GNNs utilizing these homogene-
ous graph representations exhibited equally poor accuracy for both 
ID and OOD testing (Table 1).

Reasoning that the poor performance of homogeneous GNNs 
(homo-GNNs) was related to inadequate representation of the physical 
interactions between dopants, we developed a UCNP representation 
based on a directed heterogeneous graph (Fig. 3a). Unlike the homo-
geneous graphs, dopant–dopant interactions in our heterogeneous 
graphs are represented by interaction nodes that connect dopant 
nodes (via edges), allowing the encoding of additional physical features 
of the interactions. Two different types of interaction nodes are used, 
intralayer and translayer, to delineate interactions between dopants 
within the same geometric region (either core or shell domains) and 
those in different regions, respectively. It is important to note that 
dopant nodes are never connected to other dopant nodes, and every 
interaction node connects exactly two dopant nodes. A self-interaction 
node, describing interactions between different dopant ions of the 
same type in the same region, has edges both from and to the same 
dopant node. The use of a directed graph introduces asymmetry in 
ET between two dopants (for example, Yb → Er as compared with Er → 
Yb). This is important for ET processes that are not reversible, such as 
nonresonant, phonon-assisted energy ET that results in irreversible 
heat dissipation35.

When establishing features encoded in the nodes, we chose a 
minimal set of descriptors that are most relevant for UCNPs. Dopant 
node features include dopant type, dopant concentration (within the 
respective region) and geometric bounds (inner and outer radii of the 
core/shell domain they reside in). The interaction nodes contain the 
interaction type (Yb–Er, Er–Yb, Er–Er and so on) and features derived 
from the pair of connected dopant nodes—dopant concentrations and 
geometric bounds. Because we explore only spherical nanoparticles 
with multiple concentric shells, layer radii fully specify heterostructure 
geometry. To further account for the effect of distance and region 
geometry on dopant ETs, we introduce a quantity that we call the ‘inte-
grated interaction’ (see the Methods for an explanation).

The proposed heterogeneous graph structure lends naturally to 
the use of GNNs for DL. In our hetero-GNN (Fig. 3c), we first embed 
information from each node into a continuous vector space. We con-
struct the dopant node embeddings by passing the dopant type (Zi) 
through an embedding layer, then contextualizing the initial embed-
ding on the dopant concentration (xi) and the radii (rinneri  and routeri ) 
using feature-wise linear modulation (FiLM) layers, as shown in Fig. 3d. 
Likewise, to obtain the embedding vector for the interaction nodes 
(Fig. 3e), we pass the interaction type (τij) through an embedding layer 
and then condition on the integrated interaction using a FiLM layer. A 
batch normalization is applied before the FiLM layer to shift the distri-
bution of integrated interaction values. Note that ‘contextualizing’ or 
‘conditioning’ a vector (for instance, an initial embedding) on another 
value (for example, dopant concentration, layer radii, or integrated 
interaction) with a FiLM layer is a way of combining the information 
contained in each via an operation that is controlled by many learnable 

Table 1 | Model performance on the SUNSET-1 dataset

RFR FCNN CNN GNN Hetero-GNN

ID test 57.2 (7.3%) 55.8 (6.6%) 17.6 (2.1%) 84.3 (9.9%) 13.8 (1.6%)

OOD test 365.8 (36.6%) 526.6 (55.5%) 49.0 (5.2%) 89.6 (9.4%) 22.1 (2.3%)

An overview of the performance of different models on the SUNSET-1 dataset, assessed using the MSEs (equation (5)) of predicted log10 of Ivis–UV derived from tenfold cross-validation both for 
the SUNSET-1 ID test, containing structures with up to three shells, and for the SUNSET-1 OOD test, containing structures with four shells. The first value in each cell is the unitless MSE 
multiplied by 103 for easier interpretation. The second value in parentheses is the NMSE, which is the MSE normalized by the sum of squares to yield a relative error (equation (6)). Bold text 
indicates the lowest errors for each category, both of which are achieved by the hetero-GNN.
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parameters, which often provides better expressivity and performance 
than a simple concatenation or addition36. The resulting dopant and 
interaction embeddings are then used as the inputs for three iterations 
of message passing (MP) based on the heterogeneous graph’s direc-
tional edges, where each MP iteration employs graph attention via the 
graph attention operator GATv237, after which we use mean aggregation 
to obtain the global latent representation. Finally, a fully connected 
neural network (FCNN) is used for predicting the label, the log10 of the 
emission intensity over the specified wavelength band, from the global 
latent representation

Model performance
To assess the performance of the hetero-GNN described above with 
respect to other models and representations, we train each on the 
SUNSET-1 dataset, where our target label is the unitless log10  of the 
emission intensity from the UV-blue (300–450 nm) wavelength band, 
and training data include 800-nm excited UCNPs with zero to three 
shells. We evaluate the mean squared errors (MSEs) of each model 
when predicting the intensities of held-out ID samples as well as for 

OOD nanoparticles with four shells (Table 1). We arbitrarily multiply 
our unitless MSE values by 103 for easier interpretation. We compare 
the hetero-GNN with four well-established supervised learning models: 
two models (a random forest regressor and a FCNN multilayer percep-
tron) using a tabular representation; a CNN using an image representa-
tion; and the homo-GNN described above. Model hyperparameters 
are provided in Supplementary Information section 9. Additional 
model, representation and feature details are provided in Supplemen-
tary Information sections 4–6.

Of the five models tested, the hetero-GNN exhibited the lowest 
error for both ID and OOD testing, with MSE values of 13.9 and 22.2, 
respectively (Table 1). The ID loss is fourfold lower than that of models 
utilizing tabular representations (RFR and FCNN) and 21.5% lower than 
the CNN utilizing an image representation. The fact that the image- and 
heterogenous graph-based models have the best ID accuracies demon-
strates how their representations allow them to leverage spatial infor-
mation to learn relationships between heterostructure and properties 
and to connect the common behavior of dopant ions of the same type 
but located in different regions. It is notable, however, that the least 
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instance, in a, Yb in the core, Er in the core, Yb in the shell and Er in the shell would 
all have distinct dopant-region indices. c, Architecture of the heterogeneous 

graph model, showing dopant node embeddings h0
i , intralayer interaction node 
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to the log10 of the UV intensity through a FCNN. d, Dopant node embedding 
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using feature-wise linear modulation (FiLM) generators (Gen.) to form the initial 
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i . e, Interaction node embedding 
process, where features rinneri , routeri  and xi for dopant-region i, rinnerj , routerj  and xj 
for dopant-region j, and the interaction type, τij, form the initial interaction node 
embedding between dopant-regions i and j, e0ij. Batch normalization (Batch 
Norm) layers are used in the embedding process to stabilize training.
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accurate model for ID testing was also based on a graph representation. 
The homo-GNN exhibited sixfold higher MSE than the hetero-GNN, 
highlighting that the enhanced accuracy of the hetero-GNN is the result 
of its incorporation of interactions as nodes in the graphs.

We believe that the promotion of dopant–dopant interactions 
to a node-level property specifically improves hetero-GNN perfor-
mance by elevating the prominence of interaction features during 
message passing. When included as explicit nodes, the interactions 
are able to alter the content of the passed messages, allowing for the 
transmission of richer and more physically relevant information. 
This parallels the photophysics of UCNPs, in which ET interactions 
between dopants critically determine the excited state populations of 
donors, acceptors and their neighbors30,38, driving nonlinear processes 
such as upconversion, photon avalanching5,39 and quantum cutting40. 
By contrast, interaction features in homo-GNNs have less influence 
on predictions because edge properties can only contribute to the 
attention score, influencing the weighting of the messages being 
passed between dopant nodes rather than the information contained 
therein. The heterogeneous graph structure also enables the embed-
ding of interactions between lanthanide dopants. This embedding 
introduces valuable inductive bias concerning the distinctness of 
lanthanide interactions, constraining the model to treat dopant pairs 
such as Yb–Er equally, agnostic to which layers they reside in, albeit 
with varying strengths.

The most striking benefit of the hetero-GNN is its ability to extrap-
olate, in this case to four-shelled nanostructures not included in its 
training set. When switching from ID to OOD testing, the MSE for the 
hetero-GNN model increased by 8.3- or 1.6-fold. This modest increase 
in loss is in stark contrast to the tabular-representation-based RFR 
and FCNN models, for which extrapolation resulted in six- to tenfold 
increases in the MSE, respectively. The tabular models lack the geo-
metric and relational information of the graph models and therefore 
must learn the influence of the dopants in each layer independently. 
This increases the data demand of these models, making them prone 
to overfitting and reducing their ability to predict the properties of 
unseen heterostructures. Even the image-based CNN, which had high 
ID accuracy, exhibited 2.8-fold greater loss during OOD testing. We 
attribute the superior generalization ability of the hetero-GNN to its 
graph representation. This conclusion is supported by the fact that the 
homo-GNN also exhibits very little change in loss (+6.5%) when shifting 
from interpolation to extrapolation.

In summary, representing UCNP heterostructures as heterogene-
ous graphs results in a hetero-GNN that exhibits both high accuracy and 
extrapolative capacity, in contrast to existing models that are inaccu-
rate (homo-GNN), poor at extrapolation (image CNN) or both (tabular 
models). We have improved the OOD accuracy of these hetero-GNN 
models by an additional 25% using an on-the-fly data augmentation 
approach (Fig. 4) that randomly subdivides UCNPs into physically 
equivalent heterostructures during training (see ‘Data augmentation 
for training subdivision invariance’ section in the Methods and Sup-
plementary Information section 11).

Nanoparticle optimization
The hetero-GNN is fully differentiable and takes the features that define 
the UCNP heterostructure (layer radii and dopant concentrations) as 
explicit inputs. For optimization, the hetero-GNN acts as a surrogate 
model for kMC that is not only orders of magnitude faster, but also 
provides derivatives of a predicted label with respect to structural 
features (which are inaccessible with kMC), enabling the use of more 
powerful gradient-based optimizers to identify UCNP structures that 
minimize or maximize one or multiple properties.

To explore the utility of our differentiable model for inverse 
design, we use the hetero-GNN trained on SUNSET-1 with data aug-
mentation to search for Yb/Er/Nd-codoped UCNPs with the highest 
UV/blue intensities under 800-nm excitation. To facilitate the discov-
ery of complex UCNP heterostructures, we conduct optimizations 
far beyond the structural distribution spanned by our training data. 
While the SUNSET-1 training set contains UCNP structures with up to 
four regions (a core and three shells) and with a maximum radius of 
11.5 nm, our optimizations explore UCNPs with up to ten regions and a 
maximum radius of 15 nm. Furthermore, during optimization we relax 
the constraints on region thicknesses used to generate training data 
(see ‘Optimization’ section in the Methods for more details).

Given randomly initialized nanoparticle structures, we use a com-
bination of trust region constrained local optimization41,42 and basin 
hopping global optimization to identify UCNPs with maximized UV/
blue emission as a function of maximum allowed nanoparticle radius 
and the number of distrinct regions in the heterostructure. The ‘Opti-
mization’ section in the Methods contains additional details of our 
optimization approach. The maximum intensities identified for UCNPs 
of different sizes and different numbers of regions (core + shells) are 
illustrated in Fig. 5a. The optimal structure for each distinct radius + 
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Fig. 4 | Increasing hetero-GNN accuracy using on-the-fly data augmentation 
to promote subdivision invariance. a, Arbitrarily subdividing a structural 
region in a heterostructured nanoparticle leaves the nanoparticle physically 
unchanged. Such ‘subdivision invariance’ is not reflected in nanoparticle graph 
representations. Two-dimensional visualizations of physically equivalent 
core and arbitrarily subdivided core–shell nanoparticles, along with their 
nonequivalent heterogeneous graph representations. b, Subdivision invariance 

is promoted in hetero-GNNs using on-the-fly data augmentation. In contrast 
to the nonaugmented training procedure (top), on-the-fly data augmentation 
is performed during each training epoch by inserting a random number of 
subdivisions into UCNPs at random radial coordinates (bottom). This process 
implicitly multiplies the number of unique heterograph representations of 
UCNPs seen by the model during training by the number of training epochs, and 
reduces OOD MSE by 25%.
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region number was then simulated with kMC, for which larger radius 
particles often required months-long simulations. The colors of the two 
triangles in each square indicate the kMC-simulated and ML-predicted 
intensities for the optimized structure. Remarkably, the model dem-
onstrates accurate predictions for the upconversion luminescence 
of particles with substantially OOD radii and numbers of regions, 
including when the UV emissions approach an order of magnitude 
higher than those in the training set. On the total set of optimized 
UCNP structures (N = 80), the model achieves an MSE of 33.8, which is 
slightly worse than the SUNSET-1 OOD test set (22.1), but is impressive 
given the optimized UCNPs are far further OOD in terms of emission 
intensity and heterostructure complexity.

Optimization results display several trends that are well estab-
lished in the experimental literature on UCNP heterostructures. Opti-
mized UCNPs generally achieve higher absolute brightness at larger 
diameters, presumably because they are able to host a greater number 
of absorbing and emitting dopants43. The optimized heterostructures 
for several representative sizes (Fig. 5b) show that the domains of these 
champion UCNPs are in fact heavily doped—or rather, alloyed44, with 
up to 100% lanthanide substitution—to maximize absorption and 
emission throughput. Rather than spreading dopants homogeneously 
through UCNPs, the brightest structures partition Er and Nd dopants 
into separate shells, reflecting the established knowledge that Er and 
Nd are prone to quench each other via cross-relaxation45. Because the 
energy absorbed by Nd must be transferred to Er for upconversion, 

the optimizer produced structures that separate Nd- and Er-rich 
domains by a thin shell heavily doped with only Yb (ref. 6). Such lay-
ers transmit the energy absorbed by Nd dopants to the upconverting 
Er dopants via rapid energy migration through the Yb sublattice. To 
maximize Nd–Yb and Er–Yb ET, the Nd- and Er-containing shells are 
also heavily doped with Yb. Many of the GNN-optimized structures, 
particularly ones with fewer layers, are reminiscent of the three-layered 
heterostructure refined by Zhong et al.6 and others38. Nd-rich domains 
are located in outer shells to maximize absorption by a larger num-
ber (volume) of the sensitizers. Meanwhile, an Er-rich core is used 
to promote upconversion by concentrating absorbed energy into 
a smaller volume and smaller number of Er activators. The fact that 
gradient-based optimization of the hetero-GNN surrogate model can 
rapidly learn design rules that have been developed over decades of 
UCNP research suggests its potential to discover even more complex 
and functional nanostructures.

In addition to validating established domain knowledge, the 
extrapolated results from hetero-GNN optimization provide the 
opportunity to understand the behavior of complex UCNPs with a 
greater number of shells than can be readily synthesized or simulated. 
For example, a major unanswered question is the optimal number of 
layers for a UCNP; for instance, are more layers better? The optimiza-
tion matrix in Fig. 5a suggests that, for smaller particles (below 10 nm 
radius), moving beyond two to three layers does not substantially 
improve the brightness, probably because the shell thicknesses would 
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Fig. 5 | Gradient-based optimization of UCNP heterostructure. a, The 
optimization matrix illustrates Ivis–UV intensity (cps) predictions for different 
particle sizes and numbers of layers. Each square represents the total UV and 
near-UV intensity obtained from validation (top left triangle) and predicted by 
the ensemble of models (bottom right triangle). The orange outline encapsulates 
UCNPs with maxiumum nanoparticle (NP) radii and number of regions within the 
training distribution. Red boxes indicate optimized UCNPs that were selected for 
visualization. See Supplementary Fig. 10 for an alternate color scheme provided 

for accessibility. b, Two-dimensional (2D) visualizations of four representative 
optimized UCNPs from the optimization matrix. The brightest structure, UCNP 
(iv), has a UV intensity 6.5× brighter than the brightest UCNP in the SUNSET-1 
training set. Er (orange), Nd (green), Yb (blue) and Y (white) are represented by 
their respective colors in the 2D visualizations. Note: kMC simulations of the 
optimized two-layer 15-nm particle were not possible due to the large number of 
Er3+ dopants.
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be thinner than characteristic ET distances. However, larger UCNP 
heterostructures (r > 10 nm) do see benefit from complex many-shell 
architectures, with the brightest 14- and 15-nm UCNPs having seven 
and ten shells, respectively. These many-shelled structures also sug-
gest strategies to enhance upconversion efficiency. The most striking 
characteristic of the optimized 12-, 14- and 15-nm UCNPs (Fig. 5b(ii–iv)) 
is their interleaving of multiple layers of Nd- and Er-rich shells. Rather 
than converging on one large layer of Nd sensitizer, the optimized 
12-nm UCNP sandwiches a layer of Nd sensitizer between two layers 
of Er activator (with the appropriate Yb buffer layers, as in Fig. 5b(ii)), 
while the brightest 15-nm UCNP exhibits the inverse arrangement 
(Fig. 5b(iv)). This sandwich shell arrangement allows ET to occur from 
two sides, maximizing the number of donors or acceptors within a given 
distance while minimizing concentration quenching in those outer 
shells. Curiously, the 14- and 15-nm-radius UCNPs also exhibit motifs 
in which two Nd-rich shells are separated by an intermediate shell of 
less concentrated Nd. It is unclear what advantage this motif provides. 
It is possible that UCNPs may be relatively insensitive to variations 
near their core (where this motif is observed) because the fraction of 
dopants is relatively small compared with those in outer shells. This 
argument may also explain the curious dearth of dopants in the core 
of the 15-nm UCNP. Microscopic analysis of the trajectories and energy 
flows inside the corresponding kMC simulations30 can be used in the 
future to elucidate the mechanistic origins of these structural motifs 
(see Supplementary Fig. 11 for the mechanism extracted from the 
simulation of the optimized four-layer, 10-nm UCNP heterostructure 
shown in Fig. 5b(i)). Thus, while hetero-GNN models do not provide 
direct physical insight, they can accelerate understanding by quickly 
identifying optimized structures for deeper mechanistic investigation 
with physical models.

In a particle utilizing all of the photophysical strategies observed 
in Fig. 5b, we find a 6.5× increase in Ivis–UV, as compared with the bright-
est nanoparticle in the training set. Supplementary Video 1 visual-
izes a local optimization trajectory (where many local optimizations 
compose an overall global optimization) for a particle with eight total 
regions, showing the modification of layer geometry and dopant con-
centrations as the emission intensity is being maximized. Even within 
the training feature distribution, the optimization identifies a particle 
that utilizes these design rules to achieve a 2× increase in emission 
intensity as compared with the brightest particle in the training set. 
These results illustrate that, both within the training distribution but 
especially far OOD, optimization with a differentiable hetero-GNN 
can rapidly discover structures with properties that exceed historical 
training data and identify heterostructure design rules.

Ultimately, the optimized structures in Fig. 5 and their intriguing 
structural design motifs must be validated and investigated more thor-
oughly through future experiments. The synthesis of the more com-
plex four- to ten-layered structures, while tedious, should be feasible 
because the layer-by-layer synthesis of multishell UCNP heterostruc-
tures is well established5,6,46 and can be automated using precise robotic 
workflows5,40. However, true comparisons of these synthesized struc-
tures with model predictions will require future advances in nanoscale 
characterization (for example, atomic tomography), because imaging 
tools such as transmission electron microscopy and electron energy 
loss spectroscopy currently cannot resolve the small lanthanide ion 
concentrations (as low as 0.1%) inside the thin shells (as small as 1 nm) 
of the optimized heterostructures, especially when buried within many 
other shells and projected into a two-dimensional image.

Discussion
To assess the accuracy of our model prediction during optimization, 
particularly in the far OOD region, we performed explicit kMC simu-
lations. For the largest particles, these simulations were extremely 
expensive, and we terminated many simulations early (after 20–80% of 
the requested kMC steps had run) to reduce cost. Overall, the validating 

kMC simulations took >120,000 central processing unit (CPU)-hours 
on AMD EPYC 7763 and Intel Xeon Gold 6330 CPUs, and individual 
simulations could take dozens of weeks. All optimizations using our 
trained hetero-GNN took approximately 2,000 graphics processing unit 
(GPU)-hours on NVIDIA A100 GPUs. Because optimal particles often 
emerged early during the optimization process, this GPU-hour figure 
could probably be reduced by improving our optimization procedure. 
Coupled with the fact that the kMC simulations could not be directly 
used for gradient-based optimization, as they are not inherently dif-
ferentiable, this indicates the massive acceleration in nanomaterial 
design that can be achieved using DL.

The models that we developed here were trained to predict a single 
property, namely emission intensity. An alternative direction would be 
to directly learn the UCNP photodynamics, training models to predict 
the state of a UCNP system at a particular point in time. This approach, 
in line with recent, related work in the area of neural network solutions 
to differential equations47,48, could enable more facile and automated 
mechanistic reasoning and is a worthy direction for future study.

While we have here focused on UCNPs, we believe that the het-
erogeneous graph representation that we have described and imple-
mented could be suitable to predict heterostructure-dependent 
properties in other multilayered nanomaterials. Possible applications 
include engineering the nanophotonic properties of plasmonic7,10 
and dielectric nanoparticles8, the catalytic properties of polyelemen-
tal heterostructures49, the optoelectronic properties of complex 
semiconductor nanoparticle heterostructures11, the layer-by-layer 
assembly of nanoparticles for drug delivery50, multilayered magnetic 
nanospheres12 and multilayer graphene sheets for diverse energy and 
mechanical applications51. Our framework could be applied to such 
materials by encoding the composition of the layers, dimensional 
information and physical interactions as features in the nodes of 
heterogeneous graphs. A hetero-GNN could be trained to output 
desired properties such as scattering spectra. The application-specific 
physics of these systems can be customized simply by substituting 
the physics-informed features in the interaction nodes, highlight-
ing a major advantage of our heterogeneous graph approach. We 
also note that, given a DL model that can predict multiple properties 
controlled by heterostructure, our approach could enable structural 
optimization while maximizing or minimizing multiple properties 
simultaneously. Overall, our approach has the potential to consider-
ably improve the rate at which we discover functional nanomaterials 
and could provide inspiration for applications of DL to underexplored 
areas of chemistry and nanoscience.

Methods
Simulation
We use the high-performance C++ kMC implementation in the 
RNMC software package31 to simulate the optical response of 
lanthanide-doped nanoparticles. Input generation is handled by Nano-
ParticleTools. The effects of parasitic surface ligands are incorporated 
by including dopant species that are acceptors, which effectively act 
as energy sinks.

Our kMC method uses the Gillespie rejection-free kMC approach52 
without additional optimization for efficiency. As such, we observe a 
large fraction of computation consumed by rapid fluctuations between 
configurations connected by resonant ET between nearby ions or by 
thermal equilibration between nearby energy levels53. Simulation 
efficiency could be increased through established solutions to this 
‘low barrier problem’ of temporally stiff kMC simulations, including 
by addressing nearby energy levels and ions as a single entity53 or by 
reducing rate constants for the most rapid fluctuations54. Such meth-
ods must be adapted and validated for the complex interactions of 
UCNP photophysics. Beyond kMC, there are alternative methods to 
simulate the photophysics of upconversion, including solving systems 
of differential rate equations (DREs) across spatially discretized UCNP 
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heterostructures55. While a comparison between these methods is 
outside the scope of our current work, they suggest that it may be pos-
sible to study UCNPs as we have here without relying on kMC. Although 
the complexity of ET networks in complex UCNP heterostructures 
negates many of the advantages of DREs, recent developments using 
neural network solutions to differential equations could accelerate 
such DRE-based approaches.

Workflow and Infrastructure
To scale UCNP simulations from single, hand-tailored calculations to 
high-throughput simulations on the scale of tens of thousands, we built 
an automated workflow to orchestrate the simulations. The workflow 
is implemented in Python, utilizing JobFlow and FireWorks56,57.

To begin the process, we randomly generate a large set of nano-
particle structures using code from NanoParticleTools. A ‘firework’ 
(calculation unit) is created for each candidate nanoparticle structure 
and inserted into a MongoDB collection (Supplementary Fig. 1). For 
maximum throughput, we execute simulations with multiple tiers of 
concurrency, including across various supercomputers, multiple jobs 
per system and multiple workers per job. Each worker runs simula-
tions for a single nanoparticle heterostructure, corresponding to four 
individual simulations with different seeds for the random number 
generator in event sampling.

When a resource is provisioned and a worker is activated, it que-
ries a job specification from the MongoDB database. If the simulation 
is new, the input files are generated, and the directory and machine 
information are recorded in the database. If the job is a continuation of 
an existing run, the worker navigates to the previously logged directory. 
We note that resumed simulations are allocated only to workers on the 
same machine as the initial run, as supercomputers often do not have 
direct access to each other’s file systems. Simulations are executed until 
completion or until the resource allocation is revoked. SLURM (Simple 
Linux Utility for Resource Management) jobs are configured to send 
a signal to the worker 2 min before termination, allowing the worker 
to save the current state and checkpoint the job. Once a simulation is 
completed, the trajectory is analyzed, and a summary of the results is 
written to the database. The worker then repeats the cycle of querying 
a job definition, and so on. This automated checkpointing functionality 
allowed us to use low-priority preemptible queues for the majority of 
SUNSET data generation.

SUNSET dataset
We present the dataset titled SUNSET. SUNSET consists of five sub-
datasets that encompass a range of nanoparticles. Evolution of the ET 
network via kMC is carried out to 10 ms.

Within each subdataset, we provide a training (and validation) 
split, an ID test split and an OOD test split. In SUNSET-2, SUNSET-3 
and SUNSET-4, the OOD test split also contains the particles with 
the top 5% and bottom 5% of core sizes. In the case of SUNSET-2 and 
SUNSET-3, where many of the structures are obtained from Bayesian 
optimization9, we also partition the highest-emitting particles into 
the OOD test splits. We set these particles aside to ensure the model 
performance, and therefore the optimization is not biased by these 
preoptimized configurations. SUNSET-1 comprises a wider parameter 
space and is sampled in an unbiased manner; thus, we do not follow the 
same splitting scheme. Instead, we use the four-shell nanoparticles as 
the OOD, rather than splitting based on emissions.

•	 SUNSET-1 targets the Er–Nd–Yb system, commonly used to 
achieve upconversion with 800-nm light6,45. It is composed of 
multilayered UCNPs with a core and up to four shells, illustrated 
in Fig. 2b. Each nanoparticle consists of a doped core with vari-
able radius rcore ranging from 1 to 4 nm and doped shells with 
variable thickness rshell ranging between 1 nm and 2.5 nm. The 
total UCNP size ranges between 1 nm to 13.6 nm.

•	 SUNSET-2 targets the Yb–Er system, a pair that is known to 
absorb at 980 nm and emit UV light. It is composed of core–
shell UCNPs characterized by a total radius of 4 nm. Each UCNP 
consists of a doped core with variable radii, rcore, ranging from 0 
to 3.4 nm, enclosed within a fixed outer shell radius of 3.4 nm. In 
addition, the UCNP features a cap shell containing surface spe-
cies, which mimic the parasitic nature of surface ligands in real 
UCNP systems. The total UCNP size remains constant at 4 nm. 
Notably, certain particles lack a shell when rcore = 0 or 3.4 nm.

•	 SUNSET-3 also focuses on the Yb–Er system but excludes the 
presence of surface species. Removing parasitic surface ligands 
mirrors the effect of growing an inert external shell of undoped 
NaYF4 over the synthesized UCNP. With the external shell 
excluded, the UCNP size is limited to 3.4 nm. Parameters, includ-
ing the core and shell sizes, dopants and incident wavelength, 
remain identical to SUNSET-2.

•	 SUNSET-4 expands on SUNSET-2 by introducing Tm as a possible 
dopant. Like Er, Tm can also facilitate UV emission. All other 
parameters in SUNSET-4 remain identical to SUNSET-2. This 
dataset is intended to be used in conjunction with SUNSET-2.

Averaging kMC trajectories
Due to the stochastic nature of kMC simulations, where slight differ-
ences in sampling lead to drastically different trajectories, even with 
the same starting conditions, we average across multiple replicate 
trajectories when reporting photophysical properties. Specifically, the 
simulations are influenced by the dopant placement on the NaYF4 host 
and the pseudorandom number generator used for event sampling. In 
the reported datasets, we generate four uniquely doped nanoparticles 
and simulate each with four different sampling seeds, for a total of 16 
replicates. In some cases where simulations are very costly and run for 
weeks, such as in large or heavily doped nanoparticles, we use fewer 
dopant configurations resulting in averages of 4, 8 or 12 replicates. This 
is the case for ~6% of the reported data.

To examine the effect of the simulation averaging, we examine 
the mean statistics using Delete-d jackknife58, treating the average of 
16 replicates as the true value. The error introduced by averaging 4–12 
trajectories is between 60 cps and 140 cps (Supplementary Fig. 2). 
While this may be orders of magnitude for low-emitting particles, for 
the target high-emitting particles, this is an error of <1%. We find train-
ing with more data, by inclusion of the lower fidelity points, outweighs 
the negatives of less accurate data. The lower fidelity points probably 
include a higher proportion of more heavily doped particles, which 
are more likely to run into limitations with runtime, and thus their 
inclusion in training is important for dataset diversity and to avoid an 
unintentional biasing against heavily doped particles.

Aggregation and data transformation
The output and model target, Ivis–UV, aggregated across the wavelength 
range of 300–450 nm (equation (1)), presents two major challenges. 
First, the summed intensities exhibit a broad range spanning multiple 
orders of magnitude. Regression using metrics such as mean absolute 
error or MSE may emphasize fitting higher-magnitude values, leading 
to neural network parameters becoming biased to more accurately 
predict these large values. Second, the intensities follow an exponential 
distribution, posing challenges for ML models that might prioritize 
learning patterns in the majority class (lower emissions) and struggle 
to generalize to the minority class (higher emissions).

Ivis−UV =
450
∑

λ=300
I(λ). (1)

To address these challenges, a logarithmic transformation is 
applied to compress the labels into a more manageable range (Equation 
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(2)). To prevent undefined values, a constant is added before the log 
transform for nanoparticles with no emissions. In addition to avoiding 
undefined values, this constant impacts the spacing of low-valued data. 
To ensure no gap in the label distribution, this constant is set to 100, 
considering that the lowest nonzero value in the dataset is 25 cps based 
on an average of a minimum of four 10-ms simulations.

target = log10(Ivis−UV + 100). (2)

Integrated interaction
The integrated interaction is derived by integrating a Gaussian func-
tion, denoted as 𝒩𝒩(s;0,σ), over all pairwise distances, s, between inter-
acting regions, Vi and Vj, as illustrated in Fig. 3b:

II = xi × x j∫∫ 𝒩𝒩(s;0,σ)dVidV j, (3)

s(r1,θ1,ϕ1, r2,θ2,ϕ2)

= √r21 + r22 − 2r1r2 (sin(θ1) sin(θ2) cos(ϕ1 − ϕ2) + cos(θ1) cos(θ2)),
(4)

where xi and xj are the doping concentrations in regions i and j, respec-
tively, σ are the neural network parameters, and s is written in spherical 
coordinates. While the probability of ET between two dopants is actu-
ally proportional to distance−6, we chose to represent this probability 
as a sum of Gaussian functions because they are continuous at x = 0 
and can be integrated multiple times while still capturing the decay-
ing nature of ET with increasing distance between two ions. Adjusting 
the σ parameters within the Gaussians enables the modulation of the 
effective interaction distance of dopants. When used in the ML model, 
the integrated interaction module is parameterized by n learnable 
weights (here n = 5), each corresponding to a σ value of one of the 
Gaussians in the sum.

Data augmentation for learning subdivision invariance
While the hetero-GNN exhibits superior performance to the CNN, the 
image (CNN) representation has the physically intuitive property that 
arbitrarily subdividing a given nanoparticle region (for example, divid-
ing a shell into two smaller shells, where both have the same dopant 
concentrations as the originally undivided region) has no impact on 
the model’s structural representation or subsequent label predic-
tion. This property, which we call subdivision invariance, is physically 
motivated by the fact that region subdivision is arbitrary and leaves 
the nanoparticle being described completely unchanged. However, 
neither our heterogeneous graph nor any of the other nonimage repre-
sentations are inherently subdivision invariant. For example, as shown 
in Fig. 4a, subdividing an originally core-only particle into a core and 
a shell dramatically changes the heterogeneous graph, and thus our 
hetero-GNN model may predict very different latent representations 
for physically identical nanoparticles. This is clearly undesirable and 
may be detrimental to both the learning process and subsequent struc-
tural optimization. Meanwhile, the voxelization that makes the image 
representation subdivision invariant simultaneously causes layer 
dimensions to only be present in the model implicitly, preventing UCNP 
emission from being differentiated with respect to layer thicknesses 
and precluding gradient-based optimization of UCNP heterostructure. 
Thus, any DL model that aims to enable inverse design of nanomaterial 
heterostructure via gradient-based optimization will need to reckon 
with the problem of subdivision invariance.

Even when an input representation is not inherently subdivision 
invariant, it is possible to design the DL model built atop the represen-
tation to explicitly enforce subdivision invariance such that physically 
identical structures yield identical latent representations. However, 
in the context of a graph representation, such explicit enforcement is 

only possible by avoiding the use of any nonlinear operations, which 
dramatically limits model expressivity and performance.

An alternate strategy is to train models to approximate subdivi-
sion invariance via data augmentation. Using data augmentation to 
train approximate invariances in different DL contexts (for example, 
image rotation, reflection in CNNs59, molecular rotation and transla-
tion in interatomic potentials60) is well established and can enhance 
model prediction accuracy and robustness. We apply this augmen-
tation strategy to our hetero-GNN model by artificially subdividing 
the UCNP input with the same labels (emission intensities) but with 
structural representations modified with random subdivisions. More 
specifically, for each UCNP input, we randomly subdivide each parent 
layer into up to three child layers in the augmented UCNP. The subdivi-
sion is inserted between 5% and 90% of the parent layer radii. This data 
augmentation is meant to guide the learned latent representation to 
exhibit approximate subdivision invariance, which should improve 
model performance. This strategy is implemented on-the-fly (Fig. 4b), 
so that data in each batch are augmented as they appear during train-
ing, rather than augmenting the entire dataset before training. Thus, 
this does not explicitly increase the size of the training dataset, but 
implicitly multiplies the number of unique heterograph representa-
tions of UCNPs seen by the model during training by the number of 
training epochs. Random subdivisions result in a node with rinner, router 
being split into two nodes with rinner, rsubdivision and rsubdivision, router, where 
rinner < rsubdivision < router.

When the hetero-GNN is trained using on-the-fly-augmentation, its 
performance improves by 23% on the ID test set (with error falling from 
13.8 to 10.6) and by 25% on the OOD test set (with error falling from 22.1 
(2.3%) to 16.5 (1.7%)). In addition, we validated that this augmentation 
scheme actually trains the model to learn subdivision invariance by 
evaluating the vector distance between the representation of nano-
particles and their subdivided analogs, observing that the augmented 
hetero-GNN model more closely represented the subdivided UCNPs in 
the ID and OOD test sets in embedding space than the nonaugmented 
model across a range of subdivisions (Supplementary Fig. 6). These 
results underscore the importance of considering subdivision invari-
ance in model training.

Model training
A learning rate of 1 × 10−3 is used, with a warm-up period of ten epochs, 
where the learning rate linearly increases from 1 × 10−4 to 1 × 10−3. During 
training, the MSE of the validation set is monitored and the learning rate 
is reduced on plateau, with a patience of 50 epochs. Early stopping is 
triggered when the validation MSE has not decreased for 200 epochs. 
Model performance is reported using the MSE and normalized MSE 
(NMSE), as shown in equations (5) and (6) below:

MSE = 1
N

N
∑
i=1

(log10( ̂Ivis−UV + 100) − log10(Ivis−UV + 100))
2

(5)

NMSE =
∑N

i=1 (log10( ̂Ivis−UV + 100) − log10(Ivis−UV + 100))
2

∑N
i=1 log10(Ivis−UV + 100)2

, (6)

where N is the number of UCNPs, ̂Ivis−UV is the predicted UV emission 
intensity and Ivis–UV is the actual emission intensity.

Optimization
For a nanoparticle with l control volumes and z dopant elements, we 
can define the following bounds.

0 ≤ xin ≤ 1, for i ∈ [0. .l] andn ∈ [0. .z] (7)

0 < rfraci ≤ 1, for i ∈ [0. .l], (8)
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where the outer radius of one control volume is explicitly the inner 
radius of the subsequent control volume. All dopant concentrations 
are within the closed interval [0, 1]. The fractional radius of region i, 
rfraci , is defined on an interval of [0, 1] as a fraction of the maximum 
nanoparticle size, rmax (which we identify a priori). This is necessary to 
keep on the same interval as the concentration, because the trust region 
optimizer defines the same trust region for all independent 
variables rfraci = ri/rmax

In addition, we define linear constraints that bound the total 
concentration within each region [0, 1] and restrict the thickness of 
each region.

0 ≤
z×n+z
∑

j=z×n
x j ≤ 1, forn ∈ [0. .l − 1] (9)

cmin ≤ r0 ≤ cmax (10)

tmin ≤ rn+1 − rn ≤ tmax, forn ∈ [0. .l − 1], (11)

where j is a dopant-region index, the minimum core radius cmin = 1 nm, 
the maximum core radius cmax = 5 nm, the minimum layer thickness 
tmin = 0.5 nm and the maximum layer thickness tmax = 5 nm. We initialize 
random starting configuration within the distributions outlined for 
each dataset as a starting point for optimization. We perform local 
optimization using the trust region constrained optimization as imple-
mented in SciPy41 with an initial trust radius of 1.0. An initial constraint 
penalty of 1 × 103 was applied to strongly penalize constraint violation, 
ensuring that concentrations stayed within the range of [0, 1.0] and 
total radius within specification. The criterion used for termination of 
local optimization is when the trust radius is less than 1 × 10−8. To search 
for a globally optimal particle, we repeatedly perturb the local minima 
and reoptimize the nanoparticle heterostructure using the basinhop-
ping functionality of SciPy with up to 500 steps, a step size of 0.15 and 
a temperature value of 0.25. Following global optimization, the best 
identified candidate structures are validated via kMC simulations. For 
the larger particles in the optimization matrix, these kMC simulations 
often took months to run.

Data availability
The SUNSET dataset is freely available via Figshare at https://doi.
org/10.6084/m9.figshare.25130921 (ref. 61). Each subset (for instance, 
SUNSET-1) is presented in Javascript Object Notation ( JSON) format; 
separate JSON files are also provided for ID and OOD collections 
for each subset. The hetero-GNN models used for UCNP optimiza-
tion are freely available via Figshare at https://doi.org/10.6084/
m9.figshare.27941694.v1 (ref. 62). The nanoparticle structures dis-
covered by optimizing the hetero-GNN model are available via Figshare 
at https://doi.org/10.6084/m9.figshare.27973206 (ref. 63). Data for 
Figs. 2 and 5 are available via Figshare at https://doi.org/10.6084/
m9.figshare.29916992 (ref. 64).

Code availability
The RNMC program, which contains the NPMC kMC tool, is available 
via GitHub at https://github.com/BlauGroup/RNMC and via Zenodo 
at https://doi.org/10.5281/zenodo.14360064 (ref. 65). Code defining 
the ML representations, data featurization and model training is avail-
able via GitHub at https://github.com/BlauGroup/NanoParticleTools 
and via Zenodo at https://doi.org/10.5281/zenodo.16878169 (ref. 66).
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